
Open Geospatial Consortium

Date: 2011-03-28

Reference number of this document: OGC 09-000

OGC name of this OGC® project document: http://www.opengis.net/doc/IS/SPS/2.0

Version: 2.0

Category: OpenGIS® Implementation Standard

Editor(s): Ingo Simonis, Johannes Echterhoff

OGC® Sensor Planning Service Implementation Standard

Copyright © 2011 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is an OGC Member approved international standard. This document is
available on a royalty free, non-discriminatory basis. Recipients of this document are
invited to submit, with their comments, notification of any relevant patent rights of which
they are aware and to provide supporting documentation.

Document type: OpenGIS® Standard
Document subtype: Interface
Document stage: Approved
Document language: English

Copyright © 2011 Open Geospatial Consortium

http://www.opengeospatial.org/legal/

ii Copyright © 2012 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any provision of this
Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable,
and as so modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or otherwise exported or reexported in
violation of U.S. export laws and regulations. In addition, you are responsible for complying with any local laws in your jurisdiction
which may impact your right to import, export or use the Intellectual Property, and you represent that you have complied with any
regulations or registration procedures required by applicable law to make this license enforceable

OGC 09-000

ii Co

Contents Page

1 Scope ..1

2 Compliance ..2
2.1 Specification identifier ..2
2.2 Conformance Classes ..2

3 Normative references ...4

4 Terms and definitions ..6

5 Conventions ...7
5.1 Abbreviated terms ...7
5.2 UML notation ..8
5.3 Platform-neutral and platform-specific standards ...8
5.4 Data dictionary tables ..8
5.5 Classes imported from other specifications with predefined XML

encoding ..8
5.6 Namespace Conventions ...10

6 Sensor Planning Service – Abstract Overview ..11
6.1 Introduction ...11
6.2 Client Server Interaction ...12
6.3 Task – Concept and Handling ...15

6.3.1 Introduction ...15
6.3.2 Tasking Parameters ...16
6.3.3 Tasking requests..16
6.3.4 Feasibility of a Task ..17
6.3.5 Reserving a Task ...19
6.3.6 State Handling ...19

6.4 Status Reporting ..22
6.5 Levels of Abstraction – SPS Chains ..22
6.6 Asynchronous Communication ...23
6.7 Information Access ..24

7 Sensor Planning Service – Implementation Model ..25
7.1 Interface Overview ..25
7.2 SPS Exceptions ..29
7.3 Package Overview ...31

7.3.1 Common Package ...34
7.3.1.1 Introduction ..34
7.3.1.2 Data Types ...34
7.3.1.3 TaskingRequest ..36
7.3.1.4 TaskingResponse ...38
7.3.1.5 StatusReport ...41
7.3.1.6 Task 45
7.3.1.7 TaskingRequestStatusCode ..46
7.3.1.8 TaskStatusCode..47

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium iii

7.3.1.9 EventCode ..48
7.3.1.10 Alternative..50
7.3.1.11 ParameterData ..50

7.3.2 GetCapabilities Operation ...51
7.3.2.1 Introduction ..51
7.3.2.2 Data Types ...51
7.3.2.3 Operation Request – GetCapabilities ...52
7.3.2.4 Operation Response – Capabilities ..54
7.3.2.5 Exceptions ..59
7.3.2.6 Examples ..59

7.3.3 Contents Package ..59
7.3.3.1 Introduction ..59
7.3.3.2 Data Types ...59
7.3.3.3 SPSContents ...61
7.3.3.4 SensorOffering ...62
7.3.3.5 PointOrPolygon..63

7.3.4 DescribeTasking Operation ..63
7.3.4.1 Introduction ..63
7.3.4.2 Data Types ...64
7.3.4.3 Operation Request - DescribeTasking ...64
7.3.4.4 Operation Response - DescribeTaskingResponse65
7.3.4.5 Exceptions ..66
7.3.4.6 Examples ..66

7.3.5 Submit Operation ..66
7.3.5.1 Introduction ..66
7.3.5.2 Data Types ...66
7.3.5.3 Operation Request - Submit ...68
7.3.5.4 Operation Response - SubmitResponse ...68
7.3.5.5 Exceptions ..70
7.3.5.6 Examples ..70

7.3.6 GetStatus Operation ..71
7.3.6.1 Introduction ..71
7.3.6.2 Data Types ...72
7.3.6.3 Operation Request - GetStatus ...73
7.3.6.4 Operation Response - GetStatusResponse ...74
7.3.6.5 Exceptions ..83
7.3.6.6 Examples ..83

7.3.7 GetTask Operation ..83
7.3.7.1 Introduction ..83
7.3.7.2 Data Types ...84
7.3.7.3 Operation Request – GetTask ..84
7.3.7.4 Operation Response – GetTaskResponse ..85
7.3.7.5 Exceptions ..86
7.3.7.6 Examples ..87

7.3.8 DescribeResultAccess Operation ..87
7.3.8.1 Introduction ..87
7.3.8.2 Data Types ...95

OGC 09-000

iv Co

7.3.8.3 Operation Request – DescribeResultAccess ..96
7.3.8.4 TaskOrProcess ...97
7.3.8.5 Operation Response - DescribeResultAccessResponse98
7.3.8.6 AvailableOrNot ..98
7.3.8.7 DataAvailable ..99
7.3.8.8 DataNotAvailable ..100
7.3.8.9 UnavailableCode ..100
7.3.8.10 SPSMetadata ..101
7.3.8.11 Exceptions ..102
7.3.8.12 Examples ..102

7.3.9 Reserve Operation ...103
7.3.9.1 Introduction ..103
7.3.9.2 Data Types ...103
7.3.9.3 Operation Request - Reserve ...105
7.3.9.4 Operation Response - ReservationReport ..105
7.3.9.5 ReservationReport ..107
7.3.9.6 Exceptions ..108
7.3.9.7 Examples ..108

7.3.10 Confirm Operation ..108
7.3.10.1 Introduction ..108
7.3.10.2 Data Types ...108
7.3.10.3 Operation Request - Confirm ...109
7.3.10.4 Operation Response - ConfirmResponse ...110
7.3.10.5 Exceptions ..111
7.3.10.6 Examples ..111

7.3.11 GetFeasibility Operation ...112
7.3.11.1 Introduction ..112
7.3.11.2 Data Types ...112
7.3.11.3 Operation Request - GetFeasibility ..113
7.3.11.4 Operation Response - GetFeasibilityResponse ..114
7.3.11.5 Exceptions ..115
7.3.11.6 Examples ..116

7.3.12 Update Operation ..116
7.3.12.1 Introduction ..116
7.3.12.2 Data Types ...117
7.3.12.3 Operation Request - Update ...118
7.3.12.4 Operation Response - UpdateResponse ...119
7.3.12.5 Exceptions ..122
7.3.12.6 Examples ..122

7.3.13 Cancel Operation ..122
7.3.13.1 Introduction ..122
7.3.13.2 Data Types ...122
7.3.13.3 Operation Request - Cancel ...123
7.3.13.4 Operation Response - CancelResponse ...124
7.3.13.5 Exceptions ..125
7.3.13.6 Examples ..126

7.4 SPS tasking parameters representation ..127

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium v

7.4.1 Optional Parameters ..128
7.4.2 Default Values ..129
7.4.3 Updatable parameters ..130
7.4.4 Constraints/restrictions ...132
7.4.5 Definition (observedProperty)/Semantics ...133
7.4.6 Uoms ...133
7.4.7 Encoding (XML, text, binary) ..133

8 Publish/Subscribe ...133
8.1 Introduction ...133
8.2 SPS Events ..134
8.3 Channel based filtering/SPS notification topics ..136

9 SOAP binding ..140
9.1 Introduction ...140
9.2 Exceptions ...140

9.2.1 StatusInformationExpired exception ..140
9.2.2 ModificationOfFinalizedTask exception ..141

9.3 Action URIs ...141
9.4 Realization of Publish/Subscribe ...145
9.5 Realization of Asynchronous Request/Response ..145
9.6 SPS Examples Scenario ...145

9.6.1 Retrieving the Capabilities Document ..146
9.6.2 Getting Result Access Information for a Procedure150
9.6.3 Getting the Tasking Parameter Description ..151
9.6.4 Determining the Feasibility of a Tasking Request153
9.6.5 Scheduling a Task (Submit / Reserve) ..154

9.6.5.1 Task Submission ..154
9.6.5.2 Reserving a Task ..155
9.6.5.3 Automatic Reservation Expiration ...156
9.6.5.4 Confirming a Reserved Task ...157
9.6.5.5 Cancelling a Scheduled Task ...158
9.6.5.6 Task Failure ...159
9.6.5.7 Updating a Scheduled Task ...159
9.6.5.8 Usage of LatestResponseTime ...162
9.6.5.9 Task Completion ..163

9.6.6 Getting Result Access Information for a Task ..165
9.6.7 Service Exceptions ..167
9.6.8 Notifications ..168
9.6.9 Using WS-Addressing ..172

10 SPS Task/Tasking Request State Machine Documentation177
10.1 Task State Machine ...177

10.1.1 Diagrams ...177
10.1.2 States/Choices ...179

10.1.2.1 Scheduled State ..180
10.1.2.2 InExecution State ...181
10.1.2.3 Reserved State ..183
10.1.2.4 Tasking Request Choice ..183

OGC 09-000

vi Co

10.1.2.5 Final State ..184
10.1.2.6 Initial State ...185

10.1.3 Events/Trigger ...186
10.1.3.1 DataPublished ..186
10.1.3.2 ReservationExpired ..186
10.1.3.3 TaskCancelled ..186
10.1.3.4 TaskCompleted ..186
10.1.3.5 TaskConfirmed ..187
10.1.3.6 TaskFailed ..187
10.1.3.7 TaskReserved ...187
10.1.3.8 TaskSubmitted ...187
10.1.3.9 TaskUpdated ..187

10.2 Tasking Request State Machine ..187
10.2.1 Diagrams ...187
10.2.2 States/Choices ...188

10.2.2.1 Pending State ...188
10.2.2.2 Accepted State ...189
10.2.2.3 ChoiceA ...190
10.2.2.4 ChoiceB..190
10.2.2.5 Initial State ...191
10.2.2.6 Rejected (Final) State ...191

10.2.3 Events/Trigger ...192
10.2.3.1 TaskingRequestAccepted ...192
10.2.3.2 TaskingRequestExpired ...192
10.2.3.3 TaskingRequestRejected ..193
10.2.3.4 TaskingRequestPending ...193

11 Annex A – Abstract Test Suite and Conformance Testing (normative)194
11.1 Conformance Class – Core ..194

11.1.1 Capability Test ..194
11.1.2 Modules with Basic Tests ...194

11.1.2.1 Common Request Response Handling...194
11.1.2.2 Exception Reporting ..195
11.1.2.3 Service Metadata ..196
11.1.2.4 DescribeTasking ..199
11.1.2.5 Tasking ...200
11.1.2.6 State Handling ..201
11.1.2.7 Submit ..204
11.1.2.8 Result Handling ...205

11.2 Conformance Class – State Logger ...207
11.2.1 Capability Test ..207
11.2.2 Modules with Basic Tests ...208

11.2.2.1 Service Metadata ..208
11.2.2.2 Behavior ...208

11.3 Conformance Class – Reservation Manager ...209
11.3.1 Capability Test ..209
11.3.2 Modules with Basic Tests ...210

11.3.2.1 Structure ...210

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium vii

11.3.2.2 Service Metadata ..210
11.3.2.3 Behavior ...211

11.4 Conformance Class – Task Canceller ...212
11.4.1 Capability Test ..212
11.4.2 Modules with Basic Tests ...212

11.4.2.1 Structure ...212
11.4.2.2 Behavior ...213
11.4.2.3 Service Metadata ..213

11.5 Conformance Class – Feasibility Controller ...213
11.5.1 Capability Test ..213
11.5.2 Modules with Basic Tests ...214

11.5.2.1 Structure ...214
11.5.2.2 Service Metadata ..214

11.6 Conformance Class – Task Updater ..214
11.6.1 Capability Test ..214
11.6.2 Modules with Basic Tests ...215

11.6.2.1 Structure ...215
11.6.2.2 Behavior ...215
11.6.2.3 Service Metadata ..217

11.7 Conformance Class – Basic PubSub ...218
11.7.1 Capability Test ..218
11.7.2 Modules with Basic Tests ...218

11.7.2.1 Event Publication ...218
11.7.2.2 Notification Service Metadata ...219

11.8 Conformance Class – Channel Based PubSub ..219
11.8.1 Capability Test ..219
11.8.2 Modules with Basic Tests ...220

11.8.2.1 Channel based Event Publication ...220
11.8.2.2 Channel based Notification Service Metadata ...220

11.9 Conformance Class – XML Encoding ..221
11.9.1 Capability Test ..221
11.9.2 Modules with Basic Tests ...221

11.9.2.1 Validation ...221
11.10 Conformance Class – SOAP ...222

11.10.1 Capability Test ..222
11.10.2 Modules with Basic Tests ...222

11.10.2.1 Action URIs ...222
11.10.2.2 Exception Handling ...223
11.10.2.3 Service Metadata ...223

12 Annex B - XML Schema Documents (normative) ..225

13 Annex C - Revision history ...229

OGC 09-000

viii Co

Figures Page

Figure 1 - SPS Conformance Classes and their dependencies ...4

Figure 2 — SWE Interface of an Asset (Management System) ..11

Figure 3 — client server interaction part 1 ..12

Figure 4 — client server interaction part 2 ..13

Figure 5 — client server interaction part 3 ..14

Figure 6 — client server interaction part 4 ..15

Figure 7 — dynamics of a feasibility study result ...18

Figure 8 — tasking request state machine diagram ...20

Figure 9 — task state machine diagram ...21

Figure 10 — tasking on various abstraction levels ..23

Figure 11 — SPS interfaces UML diagram ...26

Figure 12 — SPS operations with applicable exceptionCodes ..30

Figure 13 — SPS model external dependencies ..32

Figure 14 — SPS package dependencies ...32

Figure 15 — Data types contained in the Common package ...35

Figure 16 — Data types of the GetCapabilities operation ...52

Figure 17 — Data types contained in the Contents package ...60

Figure 18 — Data types of the DescribeTasking operation ...64

Figure 19 — Data types of the Submit operation ..67

Figure 20 — Data types of the GetStatus operation ..73

Figure 21 – Status information returned for various exemplary tasks/tasking requests
when the “since” parameter was used in GetStatus request77

Figure 22 – Status information returned for various exemplary tasks/tasking
requests when the “since” parameter was not used in GetStatus request78

Figure 23 — Data types of the GetTask operation ..84

Figure 24 – Status information returned in the GetTaskResponse for various
exemplary tasks/tasking requests when the state logger conformance class is
supported by the service...86

Figure 25 — Mapping of UML Reference elements to XML Schema elements.
Rarely used elements are grayed out ...94

Figure 26 — Data types of the DescribeResultAccess operation96

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium ix

Figure 27 — Data types of the Reserve operation ...104

Figure 28 — Data types of the Confirm operation ..109

Figure 29 — Data types of the GetFeasibility operation ...113

Figure 30 — Data types of the Update operation ..118

Figure 31 — Data types of the Cancel operation ...123

Figure 32 — task state machine diagram ...178

Figure 33 — task state machine diagram – tabular representation179

Figure 34 — tasking request state machine diagram ...188

OGC 09-000

x Co

Tables Page
Table 1 — SPS Conformance Classes .. 3

Table 2 — Implementation of types from OWS Common [OGC 06-121r3] 9

Table 3 — Implementation of types from SWE Common Data Model [OGC 08-094] 9

Table 4 — Implementation of types from SWE Service Model [OGC 09-001] 9

Table 5 — Prefixes and Namespaces used in this standard ... 10

Table 6 — Exception (code) defined by SPS ... 29

Table 7 — Properties in the TaskingRequest data type ... 38

Table 8 — Status Codes, usage and meaning in TaskingResponse specializations 40

Table 9 — Properties in the TaskingResponse data type .. 41

Table 10 — Properties in the StatusReport data type ... 44

Table 11 — Properties in the Task data type .. 46

Table 12 — Properties in the TaskingRequestStatusCode code list 47

Table 13 — Properties in the TaskStatusCode code list .. 48

Table 14 — Properties in the EventCode code list ... 49

Table 15 — Properties in the Alternative data type ... 50

Table 16 — Properties in the ParameterData data type .. 51

Table 17 — Properties in the GetCapabilities data type ... 53

Table 18 — Additional Section name value and meaning ... 53

Table 19 — Implementation of parameters in GetCapabilities operation request 54

Table 20 — Properties in the Capabilities data type .. 55

Table 21 — SPS section name values and contents .. 56

Table 22 — Required values of OperationsMetadata section attributes 57

Table 23 — Optional values of OperationsMetadata section attributes 57

Table 24 — Properties in the SPSContents data type .. 61

Table 25 — Code values applicable to the supportedEncoding property 62

Table 26 — Properties in the SensorOffering type .. 62

Table 27 — Inheritance of SensorOffering properties (from SPSContents) 63

Table 28 — Properties in the PointOrPolygon union .. 63

Table 29 — Property in the DescribeTasking data type .. 65

Table 30 – Properties in the DescribeTaskingResponse data type .. 65

Table 31 – StatusReport usage for different state transitions of a Submit request 69

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium xi

Table 32 — Properties in the GetStatus data type ... 74

Table 33 — Properties in the GetStatusResponse data type ... 75

Table 34 – Providing status information on GetFeasibility and Update requests 79

Table 35 – Providing status information on Reserve and Submit requests 80

Table 36 – Providing status information on scheduled tasks (part 1) 81

Table 37 – Providing status information on scheduled tasks (part 2) 82

Table 38 — Properties in the GetTask data type ... 85

Table 39 — Properties in the GetTaskResponse data type ... 85

Table 40 — Semantics of DescribeResultAccess operation request using task or procedure
identifier .. 87

Table 41 – Service Reference Mapping ... 90

Table 42 – Examples of applicable mime types when referencing data 94

Table 43 — Property in the DescribeResultAccess data type ... 97

Table 44 — Properties in the TaskOrProcess union ... 98

Table 45 — Property in the DescribeResultAccessResponse data type 98

Table 46 — Properties in the AvailableOrNot union ... 99

Table 47 — Property in the DataAvailable data type .. 99

Table 48 — Properties in the DataNotAvailable data type ... 100

Table 49 — Properties in the UnavailableCode code list ... 101

Table 50 — Properties in the SPSMetadata data type ... 102

Table 51 — Property in the Reserve data type ... 105

Table 52 – StatusReport usage for different state transitions of a Reserve request 107

Table 53 — Property in the ReservationReport type ... 108

Table 54 — Property in the Confirm data type .. 110

Table 55 — Property in the ConfirmResponse data type .. 110

Table 56 – StatusReport property usage in Confirm operation response 111

Table 57 – StatusReport usage for different state transitions of a GetFeasibility request . 115

Table 58 — Property in the Update data type .. 119

Table 59 — Property in the UpdateResponse data type .. 120

Table 60 – StatusReport usage for different state transitions of an Update request........... 121

Table 61 — Property in the Cancel data type ... 124

Table 62 — Properties in the CancelResponse data type .. 124

Table 63 – StatusReport property usage in Cancel operation response 125

Table 64 — SPS Events and their encoding .. 134

Table 65 – StatusReport encoding for notification of tasking request state transition 136

Table 66 – StatusReport encoding for notification of scheduled task state transition 136

OGC 09-000

xii Co

Table 67 — Topics and the events posted on them ... 139

Table 68 — Action URIs for SPS message facets ... 143

Table 69 — Action URI for SPS exceptions/fault types ... 144

Table 70 — Connections of the Scheduled state .. 181

Table 71 — Connections of the InExecution state .. 182

Table 72 — Connections of the Reserved state .. 183

Table 73 — Connections of the Tasking Request choice ... 184

Table 74 — Connections of the Final state .. 185

Table 75 — Connections of the Initial state .. 186

Table 76 — Connections of the Pending state ... 189

Table 77 — Connections of the Accepted state .. 190

Table 78 — Connections of the ChoiceA choice .. 190

Table 79 — Connections of the ChoiceB choice .. 191

Table 80 — Connections of the Initial state .. 191

Table 81 — Connections of the Rejected state ... 192

Table 82 — XML Schema implementation of types defined by the SPS conceptual model 226

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium xiii

i. Abstract

The OpenGIS® Sensor Planning Service Interface Standard (SPS) defines interfaces for
queries that provide information about the capabilities of a sensor and how to task the
sensor. The standard is designed to support queries that have the following purposes: to
determine the feasibility of a sensor planning request; to submit and reserve/commit such
a request; to inquire about the status of such a request; to update or cancel such a request;
and to request information about other OGC Web services that provide access to the data
collected by the requested task. This is one of the OGC Sensor Web Enablement (SWE)
[http://www.opengeospatial.org/ogc/markets-technologies/swe] suite of standards.

ii. Keywords

ogcdoc, sps, swe, swes, gml

iii. Preface

This standard is part of OGC’s Sensor Web Enablement (SWE) activity. It is the
successor of SPS version 1.0.0 (OGC 07-014r3).

Suggested additions, changes, and comments on this report are welcome and encouraged.
Such suggestions may be submitted using the OGC online change request application:

http://portal.opengeospatial.org/public_ogc/change_request.php

iv. Document terms and definitions

This document uses the standard terms defined in Subclause 5.3 of [OGC 06-121r3],
which is based on the ISO/IEC Directives, Part 2. Rules for the structure and drafting of
International Standards. In particular, the word “shall” (not “must”) is the verb form used
to indicate a requirement to be strictly followed to conform to this standard.

v. Submitting organizations

The following organizations submitted this document to the Open Geospatial Consortium
Inc.

a) International Geospatial Services Institute GmbH (iGSI)

b) Spot Image, S.A.

c) SeiCorp, Inc.

http://www.opengeospatial.org/ogc/markets-technologies/swe
http://portal.opengeospatial.org/public_ogc/change_request.php

OGC 09-000

xiv Co

vi. Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

CONTACT COMPANY EMAIL
Johannes Echterhoff (editor) iGSI johannes.echterhoff@igsi.eu
Ingo Simonis (editor) iGSI ingo.simonis@igsi.eu
Alexandre Robin Spot Image, S.A. alexandre.robin@spotimage.fr
Jim Greenwood SeiCorp, Inc. jgreenwood@Seicorp.com

vii. Issues

Any issues in this specification are captured in the following format:

Issue Name: [Issue Name goes here.] (Your Initials, Date)

Issue Description: [Issue Description.]

Resolution: [Insert Resolution Details and History.] (Your Initials, Date)]

viii. Changes to the OGC Abstract Specification

The OpenGIS® Abstract Specification does not require changes to accommodate the
technical contents of this document.

ix. Future work

Future Work will mainly address the abstraction of the currently operation-based
specification to a behavior-based specification. Then, all binding approaches, such as
SOAP or REST, will be defined in extensions to the core specification.

Direct subscriptions together with a tasking request are currently out-of-scope for the
standard. This can lead to situations in which a client interested in receiving notifications
about that tasking request or implied task misses published notifications. Functionality to
enable performing a tasking request and directly subscribing for notification of related
events should be realized in the future – either in a revision of the standard itself or as an
extension.

Conditional dependencies between parameters (example: if parameter A has value Y then
parameter B may only have value Z etc) can be supported in future versions of this
standard. The functionality could also be added through extensions.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium xv

During the development of this standard, the OGC has changed its specification
document template and development policies. This standard reflects those changes as
much as possible, but full compliancy to the new OGC specification model needs to be
achieved in future releases.

OGC 09-000

xvi Co

Foreword

This SPS 2.0 standard replaces version 1.0 of the SPS standard (OGC 07-014r3). Version
2 revises and extends version 1. Though the general functionality of the service is
preserved, the interface defined in this document is not backwards compatible to that of
SPS version 1.0.0

The Sensor Planning Service is part of the OGC Sensor Web Enablement document suite.

This document includes three annexes. Annexes A and B are normative, and Annex C is
informative.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium xvii

Introduction

The Sensor Planning Service (SPS) is intended to provide a standard interface to task
collection assets (i.e., satellites, other sensors, and other information gathering assets) and
to the support systems that surround them. Not only will different kinds of assets with
differing capabilities be supported, but also different kinds of request processing systems,
which may or may not provide access to the different stages of planning, scheduling,
tasking, collection, processing, archiving, and distribution of requests and the resulting
observation data and information that is the result of the requests. The SPS is designed to
be flexible enough to handle such a wide variety of configurations.

This standard begins with an abstract overview of the SPS interface before describing the
information model for operation requests and responses in a platform-neutral manner and
subsequently applying this model to a specific binding (SOAP in this case).

OpenGIS® Implementation Standard OGC 09-000

Copyright © 2011 Open Geospatial Consortium 1

OpenGIS® Sensor Planning Service Implementation Standard

1 Scope

This OGC™ standard establishes the baseline of Sensor Planning Service functionality
and requirements describing this functionality.

This document defines service interfaces for parameterizing – also called tasking – of
taskable devices, such as sensors or actuators.

It defines terms and their synonyms relevant to the device control domain (task, tasking,
sensor, asset etc).

The interfaces defined in this document provide functionality to:

• Retrieve metadata about the service (to understand service capabilities)
• Describe the parameterization options available for the sensor
• Check if the service is capable of performing a planned task (feasibility check)
• Reserve resources required to perform a planned task for a certain amount of time

(useful for handling combined tasking of multiple sensors)
• Instruct the service to execute a task for a sensor
• Retrieve the status of a task
• Update a task
• Retrieve information about access to the data collected by a sensor – also on a

per-task basis
• Cancel a task

This document leverages functionality defined by other standards, which enables:

• Provision and management of sensor descriptions
• Publication of and subscription for information on events recognized by the

service – for example to automatically notify clients of new information on their
task (that new data is available, that it was completed etc.)

The first sections of this document describe the theoretical background to understand SPS
functionalities. After that, the common information and communication model for SPS is
specified.

This OGC™ standard is applicable to all use cases in which one or more sensors or
sensor systems can or need to be parameterized in order to influence the measurement
process and therefore the information gathered by assets or systems.

OGC 09-000

2 Copyright © 2011 Open Geospatial Consortium

2 Compliance

2.1 Specification identifier

All requirements and conformance-classes described in this document are owned by the
standard identified as http://www.opengis.net/spec/SPS/2.0.

2.2 Conformance Classes

The following Table 1 specifies the conformance classes defined by this standard.

Compliance with a given conformance class shall be checked using the relevant tests
specified in Annex A (normative).

http://www.opengis.net/spec/SPS/2.0

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 3

Table 1 — SPS Conformance Classes

Conformance
class name

Conformance class
identifier

Operation and/or behavior

Core http://www.opengis.net/sp
ec/SPS/2.0/conf/Core

The server implements the GetCapabilities,
DescribeTasking, Submit, GetStatus, GetTask
and DescribeResultAccess operations as defined
by this standard as well as the conformance
classe(s) that this conformance class depends
upon (see Figure 1).

State Logger http://www.opengis.net/sp
ec/SPS/2.0/conf/StateLo
gger

The server implements state logger functionality
as defined by this standard as well as the
conformance classe(s) that this conformance
class depends upon (see Figure 1).

Feasibility
Controller

http://www.opengis.net/sp
ec/SPS/2.0/conf/Feasibil
ityController

The server implements the GetFeasibility
operation as well as the conformance classe(s)
that this conformance class depends upon (see
Figure 1).

Reservation
Manager

http://www.opengis.net/sp
ec/SPS/2.0/conf/Reserva
tionManager

The server implements the Reserve and Confirm
operations as well as the conformance classe(s)
that this conformance class depends upon (see
Figure 1).

Task Updater http://www.opengis.net/sp
ec/SPS/2.0/conf/TaskUp
dater

The server implements the Update operation as
well as the conformance classe(s) that this
conformance class depends upon (see Figure 1).

Task
Canceller

http://www.opengis.net/sp
ec/SPS/2.0/conf/TaskCa
nceller

The server implements the Cancel operation as
well as the conformance classe(s) that this
conformance class depends upon (see Figure 1).

Basic PubSub http://www.opengis.net/sp
ec/SPS/2.0/conf/BasicPu
bSub

The server implements publish/subscribe
functionality and publish SPS events as defined
in this standard as well as the conformance
classe(s) that this conformance class depends
upon (see Figure 1).

ChannelBased
PubSub

http://www.opengis.net/sp
ec/SPS/2.0/conf/Channel
BasedPubSub

The server implements publish/subscribe
functionality and publish SPS events on the SPS
channels/topics as defined by this standard as
well as the conformance classe(s) that this
conformance class depends upon (see Figure 1).

XML
Encoding

http://www.opengis.net/sp
ec/SPS/2.0/conf/XMLEn
coding

The server encodes the data types from the
conceptual model in XML as defined by this
standard as well as the conformance classe(s)
that this conformance class depends upon (see
Figure 1).

SOAP http://www.opengis.net/sp
ec/SPS/2.0/conf/SOAP

The server implements the SOAP binding as
defined in this standard as well as the
conformance classe(s) that this conformance
class depends upon (see Figure 1).

http://www.opengis.net/spec/SPS/2.0/conf/Core
http://www.opengis.net/spec/SPS/2.0/conf/Core
http://www.opengis.net/spec/SPS/2.0/conf/StateLogger
http://www.opengis.net/spec/SPS/2.0/conf/StateLogger
http://www.opengis.net/spec/SPS/2.0/conf/StateLogger
http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController
http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController
http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater
http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller
http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller
http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller
http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub
http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub
http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub
http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub
http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub
http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub
http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding
http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding
http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding
http://www.opengis.net/spec/SPS/2.0/conf/SOAP
http://www.opengis.net/spec/SPS/2.0/conf/SOAP

OGC 09-000

4 Co

Figure 1 - SPS Conformance Classes and their dependencies

3 Normative references

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

ISO 19105:2000, Geographic information — Conformance and Testing

ISO 19108:2002, Geographic information — Temporal schema

ISO 19136:2007, Geographic information -- Geography Markup Language (GML)

(see also: OpenGIS® Encoding Standard Geography Markup Language, OGC document
07-036)

ISO DIS 19156:2010, Geographic information — Observations and Measurements

OGC 06-121r3, OpenGIS® Web Services Common Specification

NOTE This OWS Common Specification contains a list of normative references that are also
applicable to this Implementation Standard.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 5

OpenGIS® Encoding Standard, SWE Common Data Model, OGC document number 08-
094

OpenGIS® Implementation Standard, SWE Service Model, OGC document number 09-
001

NOTE This SWE Service Model standard contains a list of normative references that are also
applicable to this Implementation Standard.

In addition to this document, this standard includes several normative XML Schema
Document files as specified in Annex B.

OGC 09-000

6 Copyright © 2011 Open Geospatial Consortium

4 Terms and definitions

For the purposes of this standard, the terms and definitions specified in clause 4 of [OGC
06-121r3] shall apply, as well as the terms and definitions specified in clause 4 of [09-
001]. In addition, the following terms and definitions apply.

4.1 Asset
synonyms: sensor, simulation
an available means of collecting information

4.2 Asset Management System
synonyms: acquisition system, asset support system
system for controlling the effective utilization of an asset

4.3 Collection
act of gathering information

NOTE In the context of SPS, the term is usually perceived having the process of gathering information
in mind. Another interpretation is the aggregation of the results of one or more collection
processes.

4.4 Requirement
something that is necessary in advance

4.5 Simulation
use of models to investigate time dependent processes

4.6 Task
(conceptual) resource that represents a SPS assignment. It includes the (possibly empty)
set of tasking parameters.

4.7 Tasking
parameterizing an asset; can be done by sending one or more tasking requests

4.8 Tasking request
request with certain tasking semantics that contains tasking parameters

NOTE In the context of SPS, the GetFeasibility, Reserve, Submit and Update requests are tasking
requests.

4.9 Tasking Parameter
parameter that has an influence on the parameterization of an asset

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 7

5 Conventions

5.1 Abbreviated terms

Most of the abbreviated terms listed in Subclause 5.1 of the OWS Common
Implementation Specification [OGC 06-121r3] apply to this document, plus the following
abbreviated terms.

AOI Area Of Interest

FES Filter Encoding Specification

AM Asset Management

O&M Observation and Measurement

SensorML Sensor Model Language

SOS Sensor Observation Service

SPS Sensor Planning Service

SWE Sensor Web Enablement

SWE Common SWE Common Data Model

SWES SWE Service Model

WCS Web Coverage Service

WMS Web Map Service

WNS Web Notification Service

OGC 09-000

8 Copyright © 2011 Open Geospatial Consortium

5.2 UML notation

Diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-121r3].

NOTE Packages and data types from foreign namespaces or data types from packages other than the
one under consideration are shown with grey background unless they are given only as types of attributes
from classes in the model defined in this specification. Interfaces are shown with light turquoise
background.

5.3 Platform-neutral and platform-specific standards

For compliance with Clause 10 of OGC Topic 12 and ISO 19119, this standard follows
the pattern defined in subclause 5.4 of [OGC 06-121r3]. That is, model elements are
specified in platform-neutral fashion first, using tables that serve as data dictionaries for
the UML model (see clause 5.4 of this document). Platform-specific encodings of these
model elements are provided in separate clauses or documents. The XML Schema
encoding has automatically been generated using the rules defined in clause 24 of [OGC
09-001].

This document specifies platform-specific encodings appropriate for a SOAP/WSDL
operation binding. However, the model as well as its XML Schema encoding (and other
data) can be used by other bindings as well, like REST(ful) or POX (Plain Old XML)
over HTTP (using XML or KVP encoding).

5.4 Data dictionary tables

The UML model data dictionary is specified herein in a series of tables. The contents of
the columns in these tables are described in table 1 of [OGC 06-121r3]. The contents of
these data dictionary tables are normative, including any table footnotes.

5.5 Classes imported from other specifications with predefined XML encoding

This specification uses an automatic mapping approach from the UML model to the
XML Schema encoding. The approach is described in chapter 24 of [OGC 09-001]. As
shown in Figure 13, this standard uses types defined by other standards. For the mapping
to XML Schema, the implementation instructions listed in table D.2 of [OGC 07-036] are
used together with the instructions listed in Table 2, Table 3 and Table 4 in this standard
and Table 4 from [OGC 09-001].

For an explanation of the table columns, see clause D.2.1 in OGC 07-036.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 9

Table 2 — Implementation of types from OWS Common [OGC 06-121r3]

UML class object element type property type

AbstractMetadata ows:AbstractMetaData - -

GetCapabilities - ows:GetCapabilitiesType -

LanguageString - ows:LanguageStringType -

OWSServiceMetadata - ows:CapabilitiesBaseType -

ReferenceGroup ows:ReferenceGroup ows:ReferenceGroupType -

Table 3 — Implementation of types from SWE Common Data Model [OGC 08-094]

UML class object element type property type

AbstractDataCom
ponent

swe:AbstractDataCo
mponent

swe:AbstractDataCompo
nentType

swe:AbstractDataComponentP
ropertyType

AbstractEncoding swe:AbstractEncodin
g

swe:AbstractEncodingTy
pe

swe:AbstractEncodingPropert
yType

Table 4 — Implementation of types from SWE Service Model [OGC 09-001]

UML class object element type property type

AbstractContents swes:AbstractContent
s

swes:AbstractContentsTy
pe

swes:AbstractContentsProper
tyType

AbstractOffering swes:AbstractOffering swes:AbstractOfferingTy
pe

swes:AbstractOfferingProper
tyType

ExtensibleRequest swes:ExtensibleReque
st

swes:ExtensibleRequestT
ype

swes:ExtensibleRequestProp
ertyType

ExtensibleRespons
e

swes:ExtensibleRespo
nse

swes:ExtensibleResponse
Type

swes:ExtensibleResponsePro
pertyType

NotificationProduc
erMetadata

swes:NotificationProd
ucerMetadata

swes:NotificationProduce
rMetadataType

swes:NotificationProducerM
etadataPropertyType

OGC 09-000

10 Co

5.6 Namespace Conventions

This standard uses a number of namespace prefixes throughout; they are listed in Table 5.
Note that the choice of any namespace prefix is arbitrary and not semantically significant.

Table 5 — Prefixes and Namespaces used in this standard

Prefix Namespace

gml http://www.opengis.net/gml/3.2

ows http://www.opengis.net/ows/1.1

soap11 http://schemas.xmlsoap.org/soap/

soap12 http://www.w3.org/2003/05/soap-envelope

swe http://www.opengis.net/swe/2.0

swes http://www.opengis.net/swes/2.0

wsa http://www.w3.org/2005/08/addressing

wsn-b http://docs.oasis-open.org/wsn/b-2

xs http://www.w3.org/2001/XMLSchema

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Co

6 Sensor Planning Service – Abstract Overview

6.1 Introduction

The operational context of the SPS is abstracted from, and therefore applies to, several
areas of interest. In the scientific area there is a constant interplay between facts, and
theories that explain the facts, which then gives rise to the need for more information in
order to confirm and extend the theories. Similarly, in the medical area symptoms give
rise to a need for information that calls for tests that support diagnosis. In the military
area there is always a great deal that is unknown about a battle space, or about a theatre
of operations other than war, which gives rise to needs for specific useful information. In
the business area corporations and other non-governmental organizations have a need for
global economic intelligence.

All of these areas have information needs, and the SPS is used to task assets to satisfy
those needs. The SPS provides an interface to parameterize assets and asset management
systems. It can be applied whenever a client is allowed to influence the internal processes
of such a system. The SPS does not provide direct access to the information gathered by
the system itself. This will be done via a SOS or some other (OGC) Web service. It rather
serves as an interface layer to the parameterization interface of the underlying system
(see Figure 2).

Figure 2 — SWE Interface of an Asset (Management System)

The SPS is an interface to a system of any complexity. The system itself is considered as
a black box. In this black box, some sort of process gets executed that can be manipulated
by setting specific parameters.

Example: a webcam takes pictures every minute. The SPS interface to this webcam allows modifying this time interval
to anything between 10sec and 1hr.

Example: A more complex example is that of a satellite. The SPS interface allows to set a number of parameters, such
as region of interest, time of interest, incidence angle with azimuth and elevation, ground resolution etc.

It is up to the SPS provider to define which parameterization options are available to
clients via the SPS interface of the given service.

A system operator may even decide to have a chain of SPS instances to provide different
capabilities to different types of users for the very same asset.

pyright © 2011 Open Geospatial Consortium 11

OGC 09-000

12 Co

Example: Consider the webcam again. Authorized users may change the looking angle and the zoom value, whereas
non-authorized users can only chose between three pre-defined settings.

This concept of abstraction levels is described in more detail in section 6.5.

6.2 Client Server Interaction

This section explains the typical interaction between an SPS client and service.

The interaction starts with the GetCapabilities request to explore what the service can
offer. If additional information about a sensor is required, the DescribeSensor operation
is used to retrieve all available information about the sensor (see Figure 3).

Figure 3 — client server interaction part 1

Next, the client needs to learn which parameters have to be set in order to task the sensor.
The client sends a DescribeTasking request and receives a DescribeTaskingResponse,
which defines syntax and semantic of each tasking parameter, including choices between
different parameter settings, default values, and value ranges.

Note: For complex missions, a huge number of parameters might need to be set by clients. Alternatively,
the service might only provide a choice between five preconfigured missions, and then there might only be
a single parameter to be set by clients, even though the missions are very complex in nature. It fully
depends on the service provider to define the parameters the client shall or may set. The definition of
tasking profiles is encouraged to reflect the specific requirements of different communities in a consistent
way. Nevertheless, tasking parameters are encoded using SWE Common and the SPS provider should add
semantic annotation to them. This allows generic SPS clients to display more specific parameter
descriptions including their semantic annotations so that a client can still meaningfully task an asset even if
the client software does not provide any other support for this activity (which client software that was
specifically developed to support certain tasking profiles will most probably do).

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Co

After the client learned about the tasking parameters, it can choose to either submit a
tasking request (Submit operation) or to perform a feasibility check (GetFeasibility
operation) – see Figure 4. Both operations create – if valid and accepted – a SPS
assigment called task. Other operations allow to reserve and update a task, which will be
discussed later on.

Figure 4 — client server interaction part 2

Note: Before being accepted, each tasking request is checked for feasibility by the service. Even though a
tasking request has been reported previously as feasible, it does not mean that this task is still feasible at the
time of submitting the task. The façaded asset might have been tasked by someone else in the meantime or
became unavailable (see clause 6.3.4 for further details).

The GetFeasibilityResponse contains a StatusReport, which indicates that the tasking
request is or is not feasible. Optionally, the report lists alternative sets of tasking
parameters that might help the client in formulating a tasking request that is feasible and
that satisfies his information needs.

pyright © 2011 Open Geospatial Consortium 13

OGC 09-000

14 Co

Independent of a prior GetFeasibility request, clients always send Submit/Reserve tasking
requests with all required tasking parameters to the service. There is no option to use the
identifier of a previous GetFeasibility tasking request in a subsequent Submit/Reserve
tasking request. This lifts the burden from the service to store all GetFeasibility request
payloads.1

If a task defined by the client is submitted to the service and is feasible, it is executed by
the service.

A client may reserve a task using the Reserve operation. All resources required to execute
the task are blocked by the service but execution does not start until the client explicitly
confirms it (via the Confirm operation) – see Figure 5.

Figure 5 — client server interaction part 3

A reservation expires at a defined point in time at which a service can reclaim all
resources blocked by the reservation.

Once a task is submitted/reserved, the client can Update or Cancel it. If a service cannot
reserve/execute a request as provided by the client, it can provide a list of alternative
parameter settings. A client can always ask for the current status of a task / tasking
request via the GetStatus operation – see Figure 6.

1 However, such behavior can be defined in an extension of this specification.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Co

Figure 6 — client server interaction part 4

The SPS responds to DescribeResultAccess requests with references to all data that was
produced for a given task, even if the task was cancelled or has failed. Clients can explore
the references and retrieve the data gathered for this task.

The SPS service can also send notifications including StatusReports to inform interested
clients about specific events, for example that new data has been published for a task, that
a task was completed or has failed. See clause 8 for further details on asynchronous
notification behavior.

6.3 Task – Concept and Handling

6.3.1 Introduction

The following sections discuss relevant aspects of tasking assets via SPS. The terms task,
tasking, tasking request and tasking parameter are defined in clause 4 and thus are not
defined again in this section.

pyright © 2011 Open Geospatial Consortium 15

OGC 09-000

16 Copyright © 2011 Open Geospatial Consortium

6.3.2 Tasking Parameters

In order to parameterize an asset (management system), clients need to provide tasking
parameters that influence the parameterization of the asset. Tasking parameters need to:

• describe full syntax as well as semantic of the parameter

• be extensible with metadata

• support optional parameters

• support choices between parameterization options

• support default values

• support provision of value constraints

• indicate whether the parameter can be used in a task update

The data types defined in SWE Common Data Model [OGC 08-094] satisfy these
requirements and thus are used by SPS for defining tasking parameters and for encoding
their values.

6.3.3 Tasking requests

To parameterize an asset, a client first has to initialize a set of tasking parameters, which
constitute the task that the client is interested in getting executed by the SPS. The
definition of the tasking parameters for a given asset can be retrieved via the SPS
describeTasking operation.

Then, the client has required all information to formulate and send a tasking request to
the SPS. Four types of tasking request are differentiated.

• getFeasibility – to determine whether the task (remember, a tasking request
contains tasking parameters) can be executed by the service or not, depending
upon its current state (see clause 6.3.4). This operation can also be used to check
if an update of an existing task is feasible.

• reserve – to block all resources required to execute the task (if it is feasible) for a
certain amount of time; this is useful to ensure that assets from different services
can be tasked together (see clause 6.3.5). The reserved task either expires or gets
confirmed to be executed by the client.

• submit – to instruct the service to execute the task (if it is feasible).
• update – to update (if feasible) the tasking parameters for a task that is already

reserved or in execution.

Determining if a tasking request is feasible can take a long time, depending on the
procedures executed by the service to evaluate the feasibility. In simple cases a trivial
syntax check of the tasking parameters might be sufficent, while in other cases the
service might have to wait for human approval.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 17

However, clients may require information to be collected until a certain point in time and
thus need the feasibility check to be completed some time before. Clients define this
latest time when the response to a getFeasibility request must be available using the
lastestResponseTime property in their request (see clause 7.3.1.3). If the service is not
able to determine the feasibility of a tasking request until then, both the service and the
client consider the tasking request as not feasible. This decision cannot be changed later
on, i.e. any response sent by the service at a later stage is void.

A feasible tasking request means that it is accepted by the service. Depending on the
request, the SPS either schedules a new task or provides a positive feasibility response
without doing any further activity internally (see clause 6.3.6 for further details on state
handling). Tasking in general can involve a sequence of tasking requests to have an asset
gather the desired information.

Example: A client first checks the feasibility of a task (via the getFeasibility operation) – once a feasible set of tasking
parameters has been determined, the task is submitted (via the submit operation) and is then updated multiple times to
adjust the way the asset is gathering information. This can for example be a switch of the sampling frequency, or
orientation of a remote sensor.

Clause 6.2 explained the client/server interactions for tasking an asset via the SPS in
more detail.

6.3.4 Feasibility of a Task

To task a certain asset or system, tasking parameters have to be provided by the client.
The definition of these parameters depends on the given asset and the parameterization
abstraction level chosen by the service provider (see clause 6.5 for further information).
A set of tasking parameters – or better: the set of values for these parameters – constitutes
a tasking request (see clause 6.3.3). Before an SPS can accept such a tasking request, it
has to check whether that task can be performed or not. This is called a feasibility check.

Feasibility of a task (or tasking request) shall be checked:

• by client request, i.e. if a client needs a pre-check for an intended task.
• if a client wants to reserve a task; a reserved task can be set to operational state by

the client at any time until the reservation expires. The service has to ensure the
full feasibility of the task during the reservation time. Under certain conditions,
the service cannot maintain the feasibility of a reserved task, e.g. if the asset was
tasked by someone else with higher priority. If the service supports
publish/subscribe functionality as described in this specification then it informs
the client that the reserved task has failed.

• when a task is submitted; the task can only be executed if it is feasible.
• whenever the client wants to perform an update of a reserved or submitted task.

The feasibility check performed by the service shall proof that the asset is capable of
executing the intended task or task update. As such, during a feasibility study a service
can check the items on the following (not exhaustive) list:

OGC 09-000

18 Co

• syntax of tasking parameters
• presence of mandatory parameters
• validity of parameter configuration
• asset availability
• parameterization update is valid according to current execution state

The result of a feasibility check depends on the current state of the service and associated
resources (e.g. the asset itself but also operators, support units, radio links, etc).

As an example, imagine a task intended to be performed during a certain interval of time
by a specific asset (see Figure 7).

Figure 7 — dynamics of a feasibility study result

Client A checks the feasibility of a task to be executed in the time interval t1-t2 (1.1). The
SPS checks the internal schedule for asset X (1.2) and recognizes that the time frame is
not blocked by any other task. The SPS therefore responds that the task is feasible.

Before client A acts again, client B submits a task for asset X with the time interval t1-t2
(2.1). Again the SPS checks if the time frame is not already blocked by another task (2.2)
and – as this is not the case – adds the task to the schedule of asset X (2.3). The time
interval t1-t2 in the schedule of asset X is now blocked by the task from client B. The SPS
has accepted the submission of the task from client B and sends an according response.

Now client A submits its tasking request (3.1). The SPS checks the internal schedule of
asset X and recognizes that the time frame t1-t2 is already blocked by another task (from
client B). It thus rejects the submission.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 19

6.3.5 Reserving a Task

Clients can reserve tasks. This is useful e.g. if a client needs to task several assets (that
are useful to him only if tasked in one go) via different services. A task can also be
reserved before being submitted. Such a reservation actually represents a task for which
all required resources are allocated by the service but which shall not be executed until
the client confirms it.

In other words, the client puts a reserved task "on hold". This can be compared to a
transaction in which the client first provides all parameterization details and finally
confirms his task. The service shall check the feasibility of the task before it accepts the
reservation. When the client confirms the reserved task, it is executed by the service.

The confirmation does not involve an additional feasibility check by the service because
a reserved task shall be feasible until it expires. If a service can no longer guarantee the
feasibility of a reserved task for any reason, the reservation shall fail.

The expiration time of a reserved task is defined by the service (optionally in agreement
with the expiration time the client requested), thus making sure that resources are not
blocked forever. The client can cancel a reservation if the service supports the cancel
operation.

A reserved task can be updated if tasking parameters are updatable (see clause 6.3.2).
Each update is subject to a feasibility check by the service.

6.3.6 State Handling

This section explains in more detail how an SPS handles the states of a tasking request
and a task. This is done via two state machine diagrams. A formal documentation of the
diagrams is given in clause 10.

NOTE: One or more of the transitions shown in the following state diagrams are triggered by events and
have a specific effect, which is to notify interested clients about the event (/Notify). A service that
implements publish/subscribe functionality can inform clients about these events.

When a client sends a tasking request to the service, it initiates the behavior shown in
Figure 8.

OGC 09-000

20 Co

Figure 8 — tasking request state machine diagram

The decision if a tasking request is feasible or not is either directly available (feasibility
determined), or requires more time (feasibility pending). The latter causes the tasking
request to transition into the Pending state. If the feasibility of the (pending) tasking
request cannot be determined before the request expires, then the tasking request
automatically transitions from Pending into the Rejected state. Otherwise the tasking
request gets back into the decision cycle: if the tasking request is feasible, then it shall be
Accepted by the service – otherwise it shall be Rejected.

A task shall be scheduled by the service if the client reserved or submitted it. The
following state diagram illustrates the state handling for such a task.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Co

Figure 9 — task state machine diagram

Based on the user’s intention, the task automatically transitions either into the state
Reserved or InExecution.

A Reserved task can be updated by the client but shall not change to state InExecution
unless the client confirms it. If the client does not confirm a Reserved task before it
expires, the task (automatically) transitions into the final state (category Expired).

The client can update a task that is InExecution at any time. If such a task produces new
data that is made available to the client, the SPS can send a notification. The task itself
remains in its current state (InExecution or a substate thereof) – or more specifically: it
transitions (back) into its current state.

If the task is completed it transitions into the final state (category Completed). This
implies that all data gathered for the task has been published.

A client can cancel a scheduled task at any time. The task then transitions into the final
state (category Cancelled).

If the server fails to complete a scheduled task as planned, then the task transitions into
the final state (category Failed).

pyright © 2011 Open Geospatial Consortium 21

OGC 09-000

22 Copyright © 2011 Open Geospatial Consortium

6.4 Status Reporting

Status reports provide information about the status of a task and tasking request but also
about the outcome of the cancellation/confirmation of a task. Status reports are contained
in operation responses but are also used to encode event information, which can be
published to subscribed clients.

Note: The conceptual model of a status report (see clause 7.3.1.5) is therefore quite flexible. Which features
of the tasking report are used depends on the specific functionality that was invoked. This is described in
detail in the according clauses.

Whenever an SPS receives a tasking request, it assigns a unique identifier to it and
provides this identifier in the status report (concerning the status of the request) that is
contained in the tasking response. The identifier is created even though the decision on
the request may still be pending (i.e. the request is not accepted yet). Once the request
gets accepted, in the case of a Submit or Reserve request a task will be scheduled. The
identifier remains the same, i.e. the initially created identifier for a request now becomes
an identifier for a task. This allows clients to use the identifier received with the response
for subsequent requests to retrieve information about such tasks, e.g. via GetStatus.

Example: the state history of a feasible Submit request and resulting task can thus be the sequence of the states Pending
 Accepted/InExecution (this state can be entered more than once, e.g. when the task was updated or data was

published) Completed

Example: the state history for a feasible Reserve request can be the sequence of the states
Accepted/Reserved (the Reserved state can also be entered more than once if the reservation was updated) Expired;
another possible sequence is Pending Accepted/Reserved InExecution Completed

The SPS reports the current status of a tasking request or task following the state types
defined in the state machines (see clauses 6.3.6 and chapter 10). A service includes only
final and non-final states. Whenever a task has reached a state, even the same state yet
again (e.g. after an update the state is still inExecution) after being triggered by an event
recognized by this standard (see clauses 10.1.3 and 10.2.3) or an extension of this
standard, the code for this event (see clause 7.3.1.9) shall be added to the report as well.
This helps clients keeping track of the current status of a task/tasking request and the
reason why a certain state was (re-)entered.

By default, an SPS therefore logs the information about the latest state transition that a
tasking request/task made. An SPS can also support provision of the full state history, i.e.
all state transitions. This capability is indicated in the service’s metadata. If this
capability is not supported by a service instance then such a service can discard
information about all state transitions of a task/tasking request except for the latest one.
In any case, an SPS is only obliged to provide status information for a certain period of
time after a tasking request/task was finalized. How long exactly this period is depends
on the given service instance.

6.5 Levels of Abstraction – SPS Chains

The functionality offered to a client through the SPS by the asset owner can range from
full blown, detailed parameterization options to just a small set of very abstract
parameters. Asset owners usually define the tasking parameters of their system according
to which functionality they want to make available to their clients. Several abstraction

OGC 09-000

Co

layers can be put in place to make tasking more intuitive for end users – thereby hiding
system complexity – while still allowing experts to take advantage of the full set of
parameterization options (see following figure).

Figure 10 — tasking on various abstraction levels

The figure above shows an example of an asset management system (or a concrete
sensor), which has a number of SPS instances assigned to it. The system has a number of
parameters to be set (red hexagons). In order to task the system, all parameters have to be
defined, which is handled by the first SPS instance (SPS 1). The abstraction interface on
top (SPS 2) only shows two parameters and a second abstraction interface (SPS 3) shows
a single parameter only.

As an example for such an SPS chain, imagine a satellite control system. The system
itself requires the parameters region of interest, time of interest, min/max of azimuth and
elevation as well as coverage type to be set. The base SPS interface therefore describes
seven tasking parameters. At the next abstraction level, the clients can only define region
of interest, time of interest and coverage type. The SPS instance at that level will take
care for the missing parameters azimuth and elevation. At the highest abstraction level,
the SPS interface describes only a single parameter: region of interest. Thus, clients
cannot define the time of interest or any of the other parameters, but need to accept what
is offered by the service. The different SPS instances simply forward the information
provided by a client from the highest level to the asset management system and define the
missing parameters with their own data. Clients are usually not aware of this “request
enrichment”; it is opaque to them.

The same chain of SPS instances is conceivable for different types of SPS, like
simulation systems, processing systems, fusion systems and real physical assets.

6.6 Asynchronous Communication

The Sensor Planning Service interface often facades complex asset management systems
that do not provide an immediate response to operation requests or which need a long
time to gather needed information. The former can be due to the fact that the request has

pyright © 2011 Open Geospatial Consortium 23

OGC 09-000

24 Copyright © 2011 Open Geospatial Consortium

to be analyzed first, which might be a time consuming task. The latter can be due to the
fact that the asset – for example a reconnaissance drone or satellite – is not located above
the area of interest and therefore has to be moved there, first. Another example is to have
the service itself inform the client about a situation of interest. In either case, this shows
that the SPS needs to have functionality to support an asynchronous interaction pattern.

6.7 Information Access

The service functionality of SPS does not encompass operations for direct access to the
information gathered or produced by an asset. Data retrieval services like SOS (Sensor
Observation Service), WMS (Web Map Service), or WCS (Web Coverage Service), or
even FTP or REST-based services are much more suited to perform this functionality.
The SPS interface provides references to the information gathered by an asset. The
reference data contains enough information to retrieve the complete set of data output by
an asset for a certain task.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 25

7 Sensor Planning Service – Implementation Model

7.1 Interface Overview

The SPS operations can be divided into informational and functional operations. The
informational operations include GetCapabilities, DescribeTasking,
DescribeResultAccess, GetTask and GetStatus operation. The functional operations are
the GetFeasibility, Reserve, Confirm, Submit, Update and Cancel operations. All
functional operations have an effect on the asset management system.

The SPS defines five interfaces with eleven operations that can be requested by a client
and performed by an SPS server. In addition, it incorporates two interfaces from the SWE
Common Service Model [OGC 09-001] – these interfaces define two more operations.
Figure 11 is a UML diagram showing these interfaces (grey interfaces are defined by
OGC 09-001).

OGC 09-000

26 Co

Figure 11 — SPS interfaces UML diagram

NOTE In this UML diagram, the request and response for each operation is shown as a single
parameter that is a data structure containing multiple lower-level parameters. These structures are discussed
in subsequent clauses. The UML classes modeling these data structures are included in the following
clauses.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 27

The SPS interfaces are:

a) BasicSensorPlanner (mandatory) – This interface represents the core functionality
of an SPS. It contains the following operations:

a. GetCapabilities – This operation allows a client to request and receive
service metadata documents that describe the capabilities of the specific
server implementation. This operation also supports negotiation of the
specification version being used for client-server interactions.

b. DescribeTasking – This operation allows a client to request the
information that is needed in order to prepare a tasking request targeted at
the assets that are supported by the SPS and that are selected by the client.
The server will return information about all parameters that have to be set
by the client in order to create a task.

c. Submit – This operation submits a task. Depending on the façaded asset, it
may perform a simple modification of the asset or start a complex mission.

d. GetStatus – This operation allows a client to receive information about the
current status of the requested task.

e. GetTask – This operation returns complete information about the
requested task.

f. DescribeResultAccess – This operation allows a client to retrieve
information, which enables access to the data produced by the asset. The
server response may contain references to any kind of data accessing OGC
Web services such as SOS, WMS, WCS or WFS.

b) SensorProvider (mandatory) – It specifies the following operation:

a. DescribeSensor – This operation allows a client to request a detailed
description of a sensor. The request can be targeted at a description that
was valid at a certain point in or during a certain period of time in the past
[OGC 09-001 clause 11].

c) ReservationManager (optional) – This optional interface enables clients to reserve
a task instead of directly submitting it. This facilitates tasking of a group of SPSs.
Reserved tasks have a finite lifetime before they expire. During this lifetime such
a task can be confirmed so that the service starts execution. The interface contains
the following operations:

a. Reserve – This operation reserves a task. A reservation lasts for a certain
amount of time and can be confirmed during this timeframe

b. Confirm – This operation is used to confirm a reserved task. By
confirming a reserved task the SPS executes the task.

OGC 09-000

28 Copyright © 2011 Open Geospatial Consortium

d) FeasibilityController (optional) – SPS implementing this interface are capable of
evaluating the feasibility of a task. This allows clients to pre-check their tasking
request. The interface contains the following operation:

a. GetFeasibility – This operation checks whether a tasking request is
feasible based on the current state of the service and façaded asset(s). It
can be used to provide alternative tasking requests to the client. Depending
on the asset type façaded by the SPS, the SPS server action may be as
simple as checking that the request parameters are valid, and are consistent
with certain business rules, or it may be a complex operation that
calculates the utilizability of the asset to perform a specific task at the
defined location, time, orientation, calibration etc.

e) TaskUpdater (optional) – A service that implements this interface allows clients
to update a reserved or accepted task. The interface contains the following
operation:

a. Update – This operation is used to request a modification of a reserved or
accepted task.

f) TaskCanceller (optional) – This interface, if implemented, enables clients to
cancel a reserved or accepted task. The interface contains the following operation:

a. Cancel – This operation allows a client to cancel a previously reserved or
accepted task.

g) SensorDescriptionManager (optional). It specifies the following operation:

a. UpdateSensorDescription - This operation allows clients to update the
description of a sensor [OGC 09-001 clause 12].

The operations of those interfaces decribed above have many similarities with other OGC
Web Services operations/interfaces. Aspects that are common with other OWS
specifications are thus specified in the OpenGIS® Web Services Common
Implementation Specification [OGC 06-121r3]. Many of these common aspects are
normatively referenced herein, instead of being repeated in this specification.

The operations in each of the SPS interfaces will be described in subsequent clauses.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/interfaces

REQ 1. Each SPS instance shall implement the interfaces
BasicSensorPlanner and SensorProvider.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 29

7.2 SPS Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/exceptions

REQ 2. Whenever an SPS server encounters an error while performing
one of its operations, it shall return an exception message
according to the model/schema defined in chapter 8 of [OGC
06-121r3].

Requirement

http://www.opengis.net/spec/SPS/2.0/req/exceptions/codes

REQ 3. The allowed standard exception codes shall include those
defined in clause 15 of [OGC 09-001] and those defined in
Table 6 in this standard. They shall be used according to

Figure 12. Only, the OperationNotSupported exception shall not
apply for the DescribeSensor operation implemented by an SPS,
because that operation is mandatory for an SPS implementation.

Table 6 — Exception (code) defined by SPS

exceptionCode value Meaning of code “locator” value
StatusInformationExpi

red
The service already discarded status

information for the requested task /
tasking request.

None, omit “locator”
parameter

ModificationOfFinaliz
edTask

The client attempted to modify (e.g.
cancel, update or confirm) a task that
was already finalized.

None, omit “locator”
parameter

NOTE: Each SPS operation may define additional requirements with respect to exception handling for that
operation.

OGC 09-000

30 Co

 exceptionCode

Operation Opera
tio

nN
otS

upporte
d

Missin
gP

ara
meter

Valu
e

Inva
lid

Para
mete

rV
alu

e

Vers
ionNeg

otia
tio

nFail
ed

Inva
lid

Update
Seq

uen
ce

Optio
nNotS

upporte
d

NoApplic
ab

leC
od

e

Inva
lid

Req
ues

t

Reques
tE

xte
nsio

n

NotS
upporte

d

Stat
usIn

fo
rm

ati
onExp

ire
d

Modific
ati

onOfFinali
ze

dTas
k exceptionCode

Operation
defined

by Name

Cancel x x x x x x x x
Confirm x x x x x x x x
DescribeResultAccess x x x x x x
DescribeTasking x x x x x x
GetCapabilities x x x x x x x x
GetFeasibility x x x x x x x
GetStatus x x x x x x x
GetTask x x x x x x x
Reserve x x x x x x x
Submit x x x x x x
Update x x x x x x x x
DescribeSensor x x x x x x
UpdateSensorDescription x x x x x x x

exception code defined by:
OGC

09-000OGC 06-121r3

this
standard

[OGC
09-000]

[OGC
09-001]

OGC
09-001

Figure 12 — SPS operations with applicable exceptionCodes

Requirement

http://www.opengis.net/spec/SPS/2.0/req/exceptions/UnknownIdentifier

REQ 4. If the value of an identifier used in a request is unknown to the
service, it shall return an InvalidParameterValue exception,
with the exception locator naming the property of the request
that contained the unknown value (“task”, “procedure” etc. –
lookup the actual name in the UML model/table describing the
properties of the request type).

SPS may drop all information about a finalized task after the minimum storage time for
that information has passed (see documentation on minStatusTime provided in clause
7.3.3.3). In consequence, a previously valid task identifier in a GetStatus request can
cause an InvalidParameterValue exception once the task information is no longer
available at SPS.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 31

Requirement

http://www.opengis.net/spec/SPS/2.0/req/exceptions/InvalidTaskingParameters

REQ 5. If a service encounters in a TaskingRequest that either

• the tasking parameters sent in the request are not
structured according to the description provided in the
DescribeTasking response,

• the encoding used by the client is not supported by the
service, or

• the provided values are not encoded correctly,

an InvalidParameterValue exception with locator
taskingParameters shall be returned.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/exceptions/ModificationOfFinalizedTask

REQ 6. If a client attempts to perform an operation on a finalized task
(like updating, confirming or cancelling it) then the service shall
return a ModificationOfFinalizedTask exception.

7.3 Package Overview

This standard defines 13 packages that correspond to the operations introduced in clause
7.1. Each package contains a number of data types and definitions.

In addition, SPS makes use of two packages defined in other standards: The Common
package, which contains data types shared by several operations, and the Contents
package, which contains data types used in the GetCapabilities operation, are defined in
OGC 08-094 and OGC 09-001 respectively.

All SPS packages use data types specified in other standards. Those data types are
normatively referenced herein, instead of being repeated in this standard.

Figure 13 shows a UML diagram summarizing the external dependencies of the SPS.

Note: The InsertSensor and DeleteSensor operations, defined in OGC 09-001 (SWE Service Model), are
not specified in this version of SPS.

OGC 09-000

32 Co

Figure 13 — SPS model external dependencies

Figure 14 shows a UML diagram summarizing the package dependencies of the SPS.

Figure 14 — SPS package dependencies

The following clauses describe each package in more detail.

Each operation request type defined in the following sections requires to set the service
and version properties.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 33

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ServiceAndVersion

REQ 7. For each operation request data type, the service property shall
have the value “SPS” and the version property shall have the
value “2.0.0”.

OGC 09-000

34 Copyright © 2011 Open Geospatial Consortium

7.3.1 Common Package

7.3.1.1 Introduction

This package contains all data types used by two or more service operations.

7.3.1.2 Data Types

The conceptual model of the Common package is shown in the following UML diagram.

OGC 09-000

Co

Figure 15 — Data types contained in the Common package

pyright © 2011 Open Geospatial Consortium 35

OGC 09-000

36 Copyright © 2011 Open Geospatial Consortium

The details of each class contained in the package are explained in the following
subclauses.

7.3.1.3 TaskingRequest

This abstract data type serves as the super class for all tasking requests such as
GetFeasibility, Reserve, Submit and Update requests.

Usually, tasking requests contain one or more tasking parameters (see clauses 6.3.2 and
7.4).

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequest/parameters

REQ 8. The tasking parameters for tasking a given procedure shall be
structured according to the tasking parameter description for
that procedure.

Any valid tasking request leads to a TaskingResponse. Although the SPS is supposed to
send a TaskingResponse when receiving a TaskingRequest, the decision whether to accept
or reject a tasking request might not be available immediately (or takes longer than the
timeout of the used communication protocol allows). This leads to a Pending state.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequest/pending

REQ 9. If a task acceptance or rejection decision is not available
immediately, the state of the tasking request shall be set to
Pending.

To avoid tasking requests on Pending for time periods longer than acceptable for clients,
the SPS provides a mechanism allowing clients to constrain this period of time. A client
can define a latestResponseTime for a tasking request. If the server does not provide a
TaskingResponse with final result until then, the requested tasking is agreed both by the
client and service as being rejected. The tasking request is expired (see definition of the
event TaskingRequestExpired in clauses 6.3.6, 7.3.1.9 and 10.2.3.1).

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 37

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequest/updateTaskingExpirationHandling

REQ 10. In case that the intention of the tasking request was to update a
reserved or submitted task but the tasking request expired, the
task remains in its current state. The service shall set the tasking
request status to Rejected.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequest/synchronousTasking

REQ 11. If synchronous request-response handling is taking place, the
service shall provide an immediate tasking response with
request status Pending if the service cannot bring about a
decision directly.

In such a situation, the default mechanism for the client to retrieve the result is to perform
a GetStatus request (see clause 7.3.6), possibly involving multiple GetStatus requests
until the final result is provided by the service.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequest/asynchronousTasking

REQ 12. If asynchronous request-response handling is taking place, and
the client provided an endpoint address, the service shall send
any state transition to that address. The first state transition
might be the transfer into state Pending.

Note: this way, the entity at the endpoint (where the response shall be delivered to asynchronously) gets the
information (task identifier) required to pull for the status of the tasking request The defined behavior also
ensures consistency of the tasking request handling regardless if synchronous or asynchronous request-
response is in use.

The abstract TaskingRequest data type is derived from the ExtensibleRequest data type
specified in clause 9 of [OGC09-001] and therefore inherits all the properties contained
in that data type. TaskingRequest does not restrict the content model of
ExtensibleRequest.

OGC 09-000

38 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequest/dataType

REQ 13. The TaskingRequest data type shall contain the properties
defined for ExtensibleRequest. In addition, it shall contain the
properties according to Table 7.

Table 7 — Properties in the TaskingRequest data type

Name Definition Data type and values Multiplicity and use
latestRespo

nseTime
point in time at which the

definite decision about
the tasking request (the
requested tasking action
being accepted or
rejected) has to be
provided by the SPS.

DateTime
(see ISO 19103 and

OGC 07-036 Table
D.2)

shall be a point in time
in the future
(compared to server
time when the
tasking request was
received)

Zero or one (optional)

procedure Pointer to the procedure
that is to be tasked.

OM_Process id
(see ISO DIS 19156)

One (mandatory)

taskingPara
meters

parameter values required
to task the sensor

ParameterData, see
clause 7.3.1.11

One (mandatory)
values for tasking

parameters shall be
provided in one of the
encodings supported by
the service, see clause
7.3.3.3

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.1.4 TaskingResponse

7.3.1.4.1 TaskingResponse – Content and StatusCodes

A tasking response is sent as the direct response to a tasking request.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingResponse/content

REQ 14. The tasking response shall contain a (subclass of the)
StatusReport (see clause 7.3.1.5), which indicates if the
requested tasking action was accepted, rejected or if the
decision is pending.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 39

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingResponse/statusCodes

REQ 15. In the StatusReport, the SPS shall use the status codes defined in
Table 8.

The following table defines the valid status codes (see clauses 7.3.1.6 and 7.3.1.8) of a
StatusReport (see clause 7.3.1.5) in response to a specific request.

OGC 09-000

40 Copyright © 2011 Open Geospatial Consortium

Table 8 — Status Codes, usage and meaning in TaskingResponse specializations

requestStatus
Code 3

taskStatus
Code 3

taskStatus code usage and overall meaning in
Get

Feasibility
Response

Reserve
Response

Submit
Response

Update
Response

Pending - 1 tasking request is pending

Rejected - 1 task is not
feasible

task is not
reserved

task is rejected update is
rejected

Accepted - 2 task is feasible NA
(taskStatus is

mandatory
here, use

value
“Reserved“)

NA (taskStatus
is mandatory

here, use,value
“InExecution“

or
“Completed“)

task was
updated

Reserved NA task is
reserved

NA NA
(do not set
taskStatus)

InExecution NA NA task is
submitted and

the service
executes it

NA
(do not set
taskStatus)

Completed NA NA the task was
submitted and

the service
already

completed its
execution

NA

Cancelled NA NA NA NA
Failed NA NA NA NA

Expired NA NA NA NA
NA = taskStatus value not applicable

Notes:

1) If requestStatus is Pending or Rejected then taskStatus is not set by the service
2) If requestStatus is Accepted then taskStatus is not used in

GetFeasibilityResponse/UpdateResponse – however, taskStatus is then required in
ReserveResponse/SubmitResponse

3) or any other sub code

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 41

7.3.1.4.2 TaskingResponse – Data Type

The abstract data type TaskingResponse serves as the super class for the
GetFeasibilityResponse, ReserveResponse, SubmitResponse, and UpdateResponse types.

The abstract TaskingResponse data type is derived from the ExtensibleResponse data type
specified in clause 9 of [OGC09-001] and therefore inherits all the properties contained
in that data type. TaskingResponse does not restrict the content model of
ExtensibleResponse.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingResponse/dataType

REQ 16. The TaskingResponse data type shall contain the properties
defined for ExtensibleResponse. In addition, it shall contain the
properties according to Table 9.

Table 9 — Properties in the TaskingResponse data type

Name Definition Data type and values Multiplicity and use
latestRespo

nseTime
Point in time at which

the definite decision
about the tasking
request (the requested
action being accepted
or rejected) will be
provided by the SPS.
The parameter allows
clients to understand
how long the decision
process (accept or
reject the tasking
request) might take.

DateTime
(see ISO 19103 and

OGC 07-036 Table
D.2)

shall be a point in time
in the future

Zero or one (optional)
shall be included by the

service if the client
included a
latestResponseTime in
the tasking request – the
service shall then use
that time (as a
confirmation of the
response time requested
by the client) or use a
time that is before the
one requested by the
client (the earlier time is
per definition the
latestResponseTime that
both client and server
agree upon)

result provides the outcome of
the tasking request

StatusReport or
subclass, see clause
7.3.1.5

One (mandatory)

7.3.1.5 StatusReport

This data type provides information about the status of a given task/tasking request. In
addition, it is the super class of ReservationReport. The status report identifies the sensor

OGC 09-000

42 Copyright © 2011 Open Geospatial Consortium

that is tasked (procedure) and the task itself (task). It contains status codes to indicate the
status of a tasking request (requestStatus) and task (taskStatus) as well as optionally a
server defined status message (statusMessage) in addition to the time when a certain
status was entered (updateTime). If an event known to the service (see state machine
diagram in Figure 9 and event definitions in Table 14) caused the transition into the new
status, the code for the event can also be provided. The status message can be provided in
any number of languages. Further on, the StatusReport provides an estimation of the time
to completion of the task (estimatedToC) and information about the overall progress of an
executed task (percentCompletion). The StatusReport can also contain Alternatives and
the taskingParameters that were provided by the client when submitting, reserving or
updating a task.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/StatusReport/taskingParameters

REQ 17. By default, taskingParameters are only provided in
StatusReports of GetStatus and GetTask responses. By default,
StatusReports in responses to tasking requests do not reflect the
taskingParameters used in the request.

Note: This behaviour may get overwritten in an extension to this
standard, if focus is more on verification of tasking parameters
than on lightweight response messages.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/StatusReport/announcement

REQ 18. SPS servers shall announce in their Capabilities if all state
changes are tracked for non-finalized tasks and tasking requests
(see clause 7.3.2.4.3).

If supported by the server, clients can request this status history of a task or tasking
request by using a GetStatus request with since parameter (see clause 7.3.6.1 for further
information).

If supported by the service, status reports caused by certain events can also be published
to a list of interested consumers (see clause 6.4).

Requirement

http://www.opengis.net/spec/SPS/2.0/req/StatusReport/dataType

REQ 19. The StatusReport type shall contain the properties according to
Table 10.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 43

Note: the usage of the StatusReport in the Cancel, Confirm, GetFeasibility, Reserve, Submit and Update
operations is further defined in the according clauses.

OGC 09-000

44 Copyright © 2011 Open Geospatial Consortium

Table 10 — Properties in the StatusReport data type

Name Definition Data type and values Multiplicity and use
task Pointer to the task that

this status report
belongs to.

Task type id
see clause 7.3.1.6

One (mandatory)

estimatedToC estimated completion
time of the task

DateTime
(see ISO 19103 and

OGC 07-036 Table
D.2)

Zero or one (optional)
Include if estimation

makes sense and can be
provided.

event signifies the event that
caused the transition
into the new
state/status

EventCode
see clause 7.3.1.9

Zero or one (optional)
Shall be included if

transition to current
state was triggered by a
known event (one of
those listed in the
EventCode code list, see
clause 7.3.1.9 – or
extensions thereof)

percentCompl
etion

indicates the progress
made in executing the
task

Real (see ISO 19103)
value shall be in the

range of 0-100

Zero or one (optional)
Shall only be used for

StatusReports with
taskStatus
‘InExecution’, a
following state or a
substate thereof.

procedure Pointer to the process
that is the subject of
the task for which the
report was generated.

OM_Process id
see ISO DIS 19156

One (mandatory)

requestStatus identifies the state of the
request (that may have
led to the scheduling
of the task)

TaskingRequestStatus
Code, see clause
7.3.1.7

One (mandatory)

statusMessage Server defined free text
that further describes
the status.

LanguageString, see
clause 10.7 in [OGC
06-121r3]

Zero to many (optional)

taskingParam
eters

Parameters used in a
tasking request that led
to the current status.

ParameterData, see
clause 7.3.1.11

Zero or one (optional)

taskStatus identifies the state of a
scheduled task

TaskStatusCode, see
clause 7.3.1.8

Zero or one (optional)

updateTime point in time at which
the task entered the
reported state

DateTime
(see ISO 19103 and

OGC 07-036 Table
D.2)

One (mandatory)

alternative alternative set of tasking
parameters that would
be feasible at the time
of report generation

Alternative type, see
clause 7.3.1.10

Zero to many (optional)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 45

Requirement

http://www.opengis.net/spec/SPS/2.0/req/StatusReport/completionRatio

REQ 20. SPS servers shall put the percentCompletion property to 0%
when the task entered the InExecution state. Only when the task
is InExecution shall the percentCompletion be increased.

Whenever a task InExecution was cancelled or failed, the last status report show the progress of
the task made until then. A completed task has 100% completion. Note that the
percentCompletion value can in fact decrease in two consecutive GetStatus requests. This
happens for example if the SPS receives an Update request and needs to start over the requested
activites.

7.3.1.6 Task

The Task type represents the complete information about a task. This encompasses
information about the current and – optionally – also previous statuses the task was in.
The according status reports also include the tasking parameters that were used when
reserving/submitting and updating the task.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Task/uniqueIdentifier

REQ 21. An SPS shall assign a unique identifier for each task (including
tasking requests) it creates (using the identifier property it
automatically inherits as defined in OGC 09-001 clause
24.2.4.1).

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Task/pendingRequestTaskIdentifier

REQ 22. An SPS shall assign a unique identifier for each tasking request
if the tasking request enters Pending state. Thus, the Task
identifier can identify a task or a pending tasking request.

OGC 09-000

46 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Task/identifierPassing

REQ 23. If an SPS defines a unique identifier for a tasking request and no
task identifier has beeen created already, the same identifier
shall be used for the task that will be created as a result of this
request.

Thus, the passing of identifiers applies to all tasking requests
except for the Update request, where a task identifier was
already created.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Task/dataType

REQ 24. The Task type shall contain the properties according to Table
11.

Table 11 — Properties in the Task data type

Name Definition Data type and values Multiplicity and use
status Status information of the

task.
StatusReport, see

clause 7.3.1.5
One or more (mandatory)
At least the current status

shall be available for a
task.

7.3.1.7 TaskingRequestStatusCode

The TaskingRequestStatusCode code list defines the different status codes for tasking
requests. The states that a tasking request can transition through are discussed in clause
6.3.6 and in detail in clause 10.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequestStatusCode/list

REQ 25. The TaskingRequestStatusCode code list shall contain the
properties/code values according to Table 12.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 47

Table 12 — Properties in the TaskingRequestStatusCode code list

Code Definition Value
Accepted See clause 10.2.2.2 – Tasking request was accepted; this

is a final state for a tasking request.
“Accepted”

Pending See clause 10.2.2.1 – Tasking request is pending. “Pending”
Rejected See clause 10.2.2.6 – Tasking request was rejected; this

is a final state for a tasking request.
“Rejected”

This code list is extensible. SPS profiles/extensions or implementations may add
additional codes that define sub states of those defined in this specification. The concrete
SPS implementation using sub states defines when to send which notifications to the
clients if publish/subscribe functionality is supported by the service.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequestStatusCode/codeSyntax

REQ 26. New TaskingRequestStatusCodes shall conform to the
following syntax:

other: <existing_code>_<new_code_for_substate>

Code names shall only use the characters A-Z, a-z and 0-9. By
adhering to this syntax, clients can ignore sub states but will still
understand the main state.

EXAMPLE: A valid new sub state would be “other: Pending_OperatorInformed”.

7.3.1.8 TaskStatusCode

The TaskStatusCode code list defines the different status codes for tasks. The states and
the transition between the states are discussed in clause 6.3.6 and in detail in clause 10.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskStatusCode/list

REQ 27. The TaskStatusCode code list shall contain the properties/code
values according to Table 13.

OGC 09-000

48 Copyright © 2011 Open Geospatial Consortium

Table 13 — Properties in the TaskStatusCode code list

Code Definition Value
Cancelled See clause 10.1.2.5 – Task was cancelled; this code

identifies a subcategory of the final state in the task
state machine.

“Cancelled”

Completed See clause 10.1.2.5 – Task was completed as planned;
this code identifies a subcategory of the final state in
the task state machine.

“Completed”

Expired See clause 10.1.2.5 – Task reservation expired; this
code identifies a subcategory of the final state in the
task state machine.

“Expired”

Failed See clause 10.1.2.5 – Task failed; this code identifies a
subcategory of the final state in the task state machine.

“Failed”

InExecution See clause 10.1.2.2 – Task is executed by the service. “InExecution”
Reserved See clause 10.1.2.3 – Task is reserved at the service. “Reserved”

This code list is extensible. SPS profiles/extensions or implementations may add
additional codes that define sub states of those defined in this specification. The concrete
SPS implementation using sub states defines when to send which notifications to the
clients if publish/subscribe functionality is supported by the service.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskStatusCode/codeSyntax

REQ 28. New TaskStatusCodes shall conform to the following syntax:

other: <existing_code>_<new_code_for_substate>

Code names shall only use the characters A-Z, a-z and 0-9. By
adhering to this syntax, clients can ignore sub states but will still
understand the main state.

EXAMPLE: A valid new sub state would be “other: InExecution_SensorInitialized”.

7.3.1.9 EventCode

The EventCode type is a list of codes signifying events that happen in SPSs and are
identified in this standard.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/EventCode/list

REQ 29. The EventCode code list shall contain the properties/code values
according to Table 14.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 49

The events defined in this table can trigger state transitions – see clause 10 for further
details.

Table 14 — Properties in the EventCode code list

Name a Definition Value a
DataPublished New data was published for a task that is

'InExecution'.
“DataPublished”

ReservationExpired A reserved task has expired (the expiration time set
by the service is before now - "now" being the
time measured by the service).

“ReservationExpi
red”

TaskCancelled A scheduled task has been cancelled. b “TaskCancelled”
TaskCompleted A task that was 'InExecution' was completed as

planned. Implies that all data gathered for the task
has been published.

“TaskCompleted”

TaskConfirmed A reserved task was confirmed. “TaskConfirmed”
TaskFailed A scheduled task has failed. c “TaskFailed”
TaskingRequestExp

ired
A pending tasking request has expired. “TaskingRequest

Expired”
TaskReserved A task was reserved. “TaskReserved”
TaskSubmitted A task was submitted. “TaskSubmitted”
TaskUpdated A task was updated. “TaskUpdated”
a Although some values listed in the column appear to contain spaces, they shall not contain spaces.
b Data gathered and published for the cancelled task should not automatically be deleted so that a client
can retrieve the data that was gathered until the task was cancelled.
c Data gathered and published for the failed task should not automatically be deleted so that a client can at
least retrieve the data that was gathered until the task failed.

This code list is extensible. SPS profiles/extensions or implementations can add
additional event codes that can for example identify transition events in substates of the
InExecution state.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/EventCode/codeSyntax

REQ 30. New EventCodes shall conform to the following syntax:

other: [A-Za-z0-9_]{2,}

Code names shall only use the characters A-Z, a-z and 0-9. By
adhering to this syntax, clients can ignore sub states but will still
understand the main state.

EXAMPLE: A valid new sub state would be “other: OperatorInformed”.

OGC 09-000

50 Copyright © 2011 Open Geospatial Consortium

7.3.1.10 Alternative

This data type represents a suggestion of a set of alternative tasking parameter values. An
optional description may be used to provide further information on this alternative.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Alternative/dataType

REQ 31. The Alternative type shall contain the properties according to
Table 15.

Table 15 — Properties in the Alternative data type

Name Definition Data type and values Multiplicity and use
description human readable

description of the
alternative

LanguageString, see
clause 10.7 in [OGC
06-121r3]

Zero to many (optional)

taskingPara
meters

block of encoded values
together with a
description of the
encoding

ParameterData, see
clause 7.3.1.11

One (mandatory)

7.3.1.11 ParameterData

This data type contains properties to store (tasking) parameter values and a description of
the encoding being used. It aggregates the required types from the SWE Common Data
Model. This data type is used by SPS whenever data needs to be delivered to or from the
service in an efficient way (see also clause 7.4 - SPS tasking parameters representation).

The DescribeTasking operation (see clause 7.3.4) provides the description of the tasking
parameters and how they should be structured when encapsulated in the values attribute
of the ParameterData object.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ParameterData/dataType

REQ 32. The ParameterData type shall contain the properties according
to Table 16.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 51

Table 16 — Properties in the ParameterData data type

Name Definition Data type and values Multiplicity and use
encoding description of the

encoding used to
encode the given values

AbstractEncoding, see
clause 7.6 in [OGC
08-094]

shall provide details for
one of the encodings
supported by the
service (see clause
7.3.3.3, Table 24)

One (mandatory)

values block of values encoded
as specified by the
encoding (description)

Any type
value shall be as

defined by the
encoding

One (mandatory)

7.3.2 GetCapabilities Operation

7.3.2.1 Introduction

The mandatory GetCapabilities operation allows clients to retrieve service metadata from
a server. The response to a GetCapabilities request contains service metadata about the
server, including specific information about the sensors provided by the service,
supported data encodings, and – if supported by the service – metadata about the
supported notification functionality.

7.3.2.2 Data Types

The conceptual model of the GetCapabilities operation is shown in the following UML
diagram.

OGC 09-000

52 Co

Figure 16 — Data types of the GetCapabilities operation

The details of the operation request and response are explained in the following
subclauses.

7.3.2.3 Operation Request – GetCapabilities

Sending an instance of the GetCapabilities data type to the service performs an SPS
GetCapabilities operation request.

The GetCapabilities data type is derived from the similarly named data type defined by
OWS Common (see clauses 7.2 and 7.3 in [06-121r3]).

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 53

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesRequest/dataType

REQ 33. The SPS GetCapabilities data type shall contain the properties
of the OWS Common GetCapabilities data type from OWS
Common (listed in table 3 of [06-121r3]). In addition, it shall
contain the properties according to Table 17.

Table 17 — Properties in the GetCapabilities data type

Name Definition Data type and values Multiplicity and use
extension container for elements

defined by extension
specifications

Any type
value is defined by the

extension
specification

Zero or more (optional)

service service type identifier Character String type,
not empty

value shall be “SPS”

Zero or one (optional)
default value is “SPS”

NOTE The request property – derived from OWS Common GetCapabilities type – is explicit or
implied by each specific binding of the GetCapabilities operation, so is not necessarily part of the request
representation defined by that binding.

OWS operations usually do not allow the addition of elements. However, with respect to
the core & extension pattern for service specifications (where the core service
functionality is defined in the base specification and extension specifications may define
further functionality that integrates with the existing one) it is desirable to have a place in
service requests and responses where elements defined by extensions, for example policy
assertions, can be added without the XML instances becoming invalid. The extension
property of the GetCapabilities data type is the realization of such an extension point.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesRequest/sectionNames

REQ 34. The allowed set of service metadata (or Capabilities) section
names and meanings shall be as specified in Tables 6 and 10 of
[OGC 06-121r3], with the addition listed in Table 18 below.

Table 18 — Additional Section name value and meaning

Section name Meaning
notifications Return Notifications section in service metadata document

The “Multiplicity and use” column in Table 3 of [OGC 06-121r3] and
Table 19 in this specification specifies the optionality of each listed parameter in the SPS
GetCapabilities operation request.

OGC 09-000

54 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesRequest/parameters

REQ 35. SPS clients and servers shall implement the GetCapabilities
parameters as defined in Table 19.

Table 19 — Implementation of parameters in GetCapabilities operation request

Name Multiplicity Client implementation Server implementation
service

Zero or one
(optional)

May be implemented by all
clients, using specified value

If parameter not provided,
default value is to be
assumed by service

Shall be implemented by all
servers, checking that
parameter is received with
specified value

Default value shall be
assumed if parameter is not
provided in request

request

One
(mandatory)

Shall be implemented by all
clients, using specified value

In specific binding the value
may be implied through
encoded request structure

Shall be implemented by all
servers, checking if
parameter is received with
specified value

In specific binding the value
may be implied through
encoded request structure

acceptVersions

Zero or one
(optional)

Should be implemented by all
software clients, using
specified values

Shall be implemented by all
servers, checking if
parameter is received with
specified value(s)

sections

Zero or one
(optional)

Each parameter may be
implemented by each client

If parameter not provided,
shall expect default response

If parameter provided, shall
allow default or specified
response

Each parameter may be
implemented by each
server

If parameter not
implemented or not
received, shall provide
default response

If parameter implemented
and received, shall provide
specified response

updateSequence

Zero or one
(optional)

acceptFormats

Zero or one
(optional)

7.3.2.4 Operation Response – Capabilities

The Capabilities data type defines the normal response returned by an SPS when a valid
GetCapabilities request has been received.

It is derived from the OWSServiceMetadata data type defined by OWS Common (see
clause 7.4 in [OGC 06-121r3]). It contains two more sections (contents and notifications)
– depending upon the GetCapabilities request and the functionality supported by the
service.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 55

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/dataType

REQ 36. The Capabilities data type shall include the properties of the
OWSServiceMetadata data type (as defined in clauses 7.4.2 to
7.4.7 in [OGC 06-121r3]) with the additional properties
according to Table 20.

Table 20 — Properties in the Capabilities data type

Name Definition Data type and values Multiplicity and use
contents metadata about the

provided sensors and
supported data
encodings

SPSContents, see
clause 7.3.3

Zero or one (optional)
inclusion depends on the

values in the Sections
parameter of the
GetCapabilities
operation request

extension container for elements
defined by extension
specifications

Any type
value is defined by the

extension
specification

Zero or more (optional)
use as explained for the

extension property in
the GetCapabilities
operation request data
type (see clause 7.3.2.3)

notifications metadata about the
supported notification
functionality

NotificationProducerM
etadata, see clause 8
in [OGC 09-001]

Zero or one (optional)
inclusion depends on the

values in the Sections
parameter of the
GetCapabilities
operation request

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/defaultVersion

REQ 37. A service implementing this standard shall at least be capable of
providing a Capabilities document with version number “2.0.0”
that is structured as defined in section 7.3.2.4.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/sections

REQ 38. An SPS shall implement the sections of the Capabilities
document listed in Table 21 according to the Use column in that
table.

OGC 09-000

56 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/sectionListing

REQ 39. If the Sections parameter is supported for the GetCapabilities
operation request the service shall list the supported section
names as values of an accordingly named parameter in the
metadata of the GetCapabilities operation.

Clients can request any combination of the sections listed in the GetCapabilities
operations metadata.

Table 21 — SPS section name values and contents

Section name Contents Use
serviceIdentification Metadata about this specific server (see clause

7.4.4 in [OGC 06-121r3]).
mandatory

serviceProvider Metadata about the organization operating this
server (see clause 7.4.5 in [OGC 06-121r3]).

mandatory

operationsMetadata Metadata about the operations specified by this
service and implemented by this server,
including the URLs for operation requests. The
basic contents and organization of this section
shall be the same as for all OWSs (see clause
7.4.6 in [OGC 06-121r3]).

mandatory

contents Metadata about the sensors provided by the SPS
and supported data encodings (see clause 7.3.3
below).

mandatory

notifications Metadata about the supported notification
functionality (see clause 8 in [OGC 09-001]).

conditional
required if

publish/subscribe
functionality is
realized by the
service

7.3.2.4.1 OperationsMetadata section standard contents

For the SPS, the OperationsMetadata section is structured like for all OGC Web Services
– as specified in Subclause 7.4.6 of [OGC 06-121r3].

7.3.2.4.2 Advertising Implemented Operations

The parameter names and values to be used in the OperationsMetadata section, which
indicate the implemented operations of an SPS instance, are specified in Table 22 and
Table 23.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 57

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/implementedOperations

REQ 40. The implemented operations shall be listed in the
OperationsMetadata by SPS instances according to the values
defined in Table 22 and Table 23.

In Table 22 and Table 23, the “Attribute name” column uses dot-separator notation to
identify parts of a parent item. The “Attribute value” column references an operation
parameter, in this case an operation name, and the meaning of including that value is
listed in the right column.

Table 22 — Required values of OperationsMetadata section attributes

Attribute name Attribute value Meaning of attribute value
Operation.name GetCapabilities This server implements the GetCapabilities

operation.
DescribeSensor This server implements the DescribeSensor

operation.
DescribeTasking This server implements the DescribeTasking

operation.
Submit This server implements the Submit operation.
GetStatus This server implements the GetStatus operation.
GetTask This server implements the GetTask operation.
DescribeResultAccess This server implements the DescribeResultAccess

operation.

Table 23 — Optional values of OperationsMetadata section attributes

Attribute name Attribute value Meaning of attribute value
Operation.name Reserve This server implements the Reserve operation.

Confirm This server implements the Confirm operation.
GetFeasibility This server implements the GetFeasibility operation.
Update This server implements the Update operation.
Cancel This server implements the Cancel operation.
UpdateSensorDes

cription
This server implements the UpdateSensorDescription

operation.

7.3.2.4.3 Advertising Support for Status Logging

SPS instances can log the statuses of tasks and tasksing requests for any period of time.

OGC 09-000

58 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/status-logging-supported

REQ 41. If an SPS service logs the complete state history of non-
finalized tasks and tasking requests, it shall list the identifier of
the state logger conformance class (see subclause 2.2) as (one of
the) value(s) of the profile parameter in the Capabilities
document’s ServiceIdentification section.

7.3.2.4.4 Advertising Supported Operation Encodings

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/supportedEncodings

REQ 42. SPS servers shall specify the supported encodings for HTTP
POST based transfer of operation requests. Specifically, an
ows:Constraint element shall be included with PostEncoding as
the value of the name attribute supporting

a) the value “SOAP” to indicate that SOAP encoding is
allowed, as specified in clause 8.

b) the value “XML” to indicate that XML encoding is allowed
(without SOAP message encapsulation).

7.3.2.4.5 Advertising Other Operation Metadata

In addition to the optional values listed in Table 23, there are many optional values of the
name attributes and value elements in the OperationsMetadata section. Most of these
attributes and elements are for recording the domains of various parameters and
quantities.

EXAMPLE 1 The domain of the exceptionCode parameter can record all the codes implemented for each
operation by that specific server. Similarly, each of the GetCapabilities operation optional request parameters can have
its domain recorded.

EXAMPLE 2 The domain of the Sections parameter in the GetCapabilities operation request can record all the
sections implemented by that specific server.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 59

7.3.2.4.6 Advertising Supported Conformance Classes

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/conformanceClass

REQ 43. Any SPS service shall document in its capabilities document the
supported conformance classes. The identifier (a URI) of each
supported conformance class shall be listed as a value of the
profile property of the ServiceIdentification section.

7.3.2.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/exception

REQ 44. When an SPS server encounters an error while performing a
GetCapabilities operation, it shall return an exception message
as specified in clause 7.2.

If the GetCapabilities request contained the Sections parameter with value notifications
but that value is not listed by the service for the Sections parameter (because the service
does not implement publish/subscribe functionality) then an InvalidParameterValue
exception with locator Sections or sections is returned.

7.3.2.6 Examples

Clause 9.6 provides example XML instances for the GetCapabilities operation request
and response.

7.3.3 Contents Package

7.3.3.1 Introduction

This package contains the data types used to provide metadata about the sensors provided
by an SPS and the supported data encodings.

In order to reduce the size of the Capabilities document by reducing the amount of
redundant information in the contents section, the property inheritance mechanism
defined in clause 22 of [OGC 09-001] is used.

7.3.3.2 Data Types

The conceptual model of the Contents package is shown in the following UML diagram.

OGC 09-000

60 Co

Figure 17 — Data types contained in the Contents package

The details of each class contained in the package are explained in the following sub
clauses.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 61

7.3.3.3 SPSContents

This data type defines the supported encodings for tasking parameter values and provides
metadata about the sensors facaded by the service. In addition, it provides information on
the storage time of task and task request status information. By default, SPS servers store
the last status information only. After finalization of a task or task request, any SPS
service stores this information until the minStatusTime has expired. This time period
starts when the task or task request transitions into a final state. Optionally, SPS servers
can store any additional historic status information. SPS servers indicate this capability
by adding the since parameter to the metadata of the GetStatus operation in the
Capabilities document (see clause 7.3.2.4.3 - Advertising Support for Status Logging on
page 57).

The SPSContents acts as the property provider for a SensorOffering (see clause 22 in
[OGC 09-001]).

The SPSContents (see Figure 17) type is derived from SWES AbstractContents type
defined in clause 7 of [OGC09-001] and therefore inherits all the properties contained in
that data type. SPSContents restricts the content model of AbstractContents in that it
requires that the offering property is of type SensorOffering (see clause 7.3.3.4) or a
subtype thereof.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/contents

REQ 45. The SPSContents data type shall contain the properties defined
for SWES AbstractContents. In addition, it shall contain the
properties according to Table 24 in combination with Table 25.

Table 24 — Properties in the SPSContents data type

Name Definition Data type and values Multiplicity and use
minStatusTi

me
time period for which the

services provides status
information about
finalized tasks or
tasking requests

TM_PeriodDuration,
see ISO 19108

One (mandatory)

supportedE
ncoding

encoding supported by
the service to encode
tasking parameter
values

SWEEncodingCode,
see clause 10.2.3 in
OGC 09-001

applicable code
value(s) as defined in
Table 25

One or more (mandatory)

OGC 09-000

62 Copyright © 2011 Open Geospatial Consortium

Table 25 — Code values applicable to the supportedEncoding property

Applicable Code Value(s) Additional Note
http://www.opengis.net/swe/2.0/TextEncoding best suited in most cases if

ASCII encoded parameters are
used

http://www.opengis.net/swe/2.0/XMLEncoding generally applicable

http://www.opengis.net/swe/2.0/BinaryEncoding suited for example for
transferring image data to the
service

7.3.3.4 SensorOffering

This data type contains metadata about a sensor provided by the service.

The SensorOffering (see Figure 17) type is derived from SWES AbstractOffering defined
in clause 7 of [OGC 09-001] and therefore inherits all the properties contained in that
type. SensorOffering does not restrict the content model of AbstractOffering.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/sensorOffering

REQ 46. The SensorOffering type shall contain the properties defined for
SWES AbstractOffering. In addition, it shall contain the
property according to Table 26.

Table 26 — Properties in the SensorOffering type

Name Definition Data type and values Multiplicity and use
observable

Area
the area that the sensor

can observe
PointOrPolygon, see

clause 7.3.3.5
One (mandatory)

The SensorOffering represents an inheritor of the properties contained in the
SPSContents. The following table shows which of the properties defined in the content
model of SensorOffering can be inherited and which cardinality is expected after the
inheritance mechanism has been applied.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 63

Table 27 — Inheritance of SensorOffering properties (from SPSContents)

Property Cardinality Inheritance

procedure 1 NA

procedureDescriptionFormat 1..* replace

observableProperty 1..* replace
relatedFeature 0..* replace
observableArea 1 NA

Thus, even though the UML model and schema encoding define the observableProperty
and procedureDescriptionFormat properties as optional, they are mandatory in each
SensorOffering. In other words, each offering has to include at least one value for these
two properties after the property inheritance mechanism was applied.

7.3.3.5 PointOrPolygon

This type represents a choice between the geometric types point or a polygon. Those two
types are e.g. used to describe the point or the area observed by a sensor.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetCapabilitiesResponse/PointOrPolygon

REQ 47. The PointOrPolygon union shall contain the properties/choices
according to Table 28.

Table 28 — Properties in the PointOrPolygon union

Name Definition Data type and values Multiplicity and use
byPoint a point GM_Point, see clause

10.3.1 in [OGC 07-
036]

One (mandatory)
Because PointOrPolygon

is a union, either a point
or polygon shall be used
(i.e. there is a choice
between the properties)

byPolygon a polygon Polygon, see clause
10.5.4 in [OGC 07-
036]

7.3.4 DescribeTasking Operation

7.3.4.1 Introduction

The DescribeTasking operation allows SPS clients to retrieve the description of the data
structures for the tasking parameters of a sensor. The data structure description is
encoded in SWE Common (see clause 7.4 - SPS tasking parameters representation).

OGC 09-000

64 Co

7.3.4.2 Data Types

The conceptual model of the DescribeTasking operation is shown in the following UML
diagram.

Figure 18 — Data types of the DescribeTasking operation

The details of the operation request and response are explained in the following
subclauses.

7.3.4.3 Operation Request - DescribeTasking

Sending an instance of the DescribeTasking data type to the service performs an SPS
DescribeTasking operation request.

The DescribeTasking data type is derived from the SWES ExtensibleRequest data type
specified in clause 9 of [OGC 09-001] and therefore inherits all the properties contained
in that data type.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeTaskingRequest/dataType

REQ 48. The DescribeTasking data type shall contain the properties
defined for SWES ExtensibleRequest. In addition, it shall
contain the property according to Table 29.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 65

Table 29 — Property in the DescribeTasking data type

Name Definition Data type and values Multiplicity and use
procedure Pointer to the procedure

(sensor) for which the
tasking description is
requested.

OM_Process id
see ISO DIS 19156

One (mandatory)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.4.4 Operation Response - DescribeTaskingResponse

The DescribeTaskingResponse data type represents the response to an SPS
DescribeTasking operation request.

The DescribeTaskingResponse data type is derived from the SWES ExtensibleResponse
data type specified in clause 9 of [OGC 09-001] and therefore inherits all the properties
contained in that data type. DescribeTaskingResponse does not restrict the content model
of ExtensibleResponse.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeTaskingResponse/dataType

REQ 49. The DescribeTaskingResponse data type shall contain the
properties defined for SWES ExtensibleResponse. In addition, it
shall contain the property according to Table 30.

Table 30 – Properties in the DescribeTaskingResponse data type

Name Definition Data type and values Multiplicity and use
taskingParameters description of tasking

parameters for tasking
the requested asset

AbstractDataCompone
nt, see clause 7.2 in
[OGC 08-094]

One (mandatory)

The taskingParameter property shall be fully identified with a name defined by the SPS –
see OGC 08-094 for further details. The XML Schema encoding of the
DescribeTaskingResponse ensures (via the soft-typed tagged value) that such a name can
be added by the service. The name is important for clients when certain encodings are
used to encode the tasking paramter data, and the encodings require naming of SWE
Common data components (like the XML encoding).

OGC 09-000

66 Copyright © 2011 Open Geospatial Consortium

7.3.4.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeTaskingResponse/exceptions

REQ 50. When an SPS server encounters an error while performing a
DescribeTasking operation, it shall return an exception message
as specified in clause 7.2.

7.3.4.6 Examples

Clause 9.6 provides example XML instances for the DescribeTasking operation request
and response.

7.3.5 Submit Operation

7.3.5.1 Introduction

The Submit operation allows SPS clients to submit a tasking request for an asset. The
client encodes the tasking parameters according to the parameter description defined in
the DescribeTasking response. SPS servers do a feasibility check of the request and
perform the task if applicable.

7.3.5.2 Data Types

The conceptual model of the Submit operation is shown in the following UML diagram.

OGC 09-000

Co

Figure 19 — Data types of the Submit operation

The details of the operation request and response are explained in the following sub
clauses.

pyright © 2011 Open Geospatial Consortium 67

OGC 09-000

68 Copyright © 2011 Open Geospatial Consortium

7.3.5.3 Operation Request - Submit

Sending an instance of the Submit data type to the service performs an SPS Submit
operation request.

The Submit data type is derived from the TaskingRequest data type (see clause 7.3.1.3)
and therefore inherits all the properties contained in that data type. Submit neither
restricts the content model of TaskingRequest nor adds additional properties.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SubmitRequest/dataType

REQ 51. The Submit data type shall contain the properties defined for the
TaskingRequest data type.

7.3.5.4 Operation Response - SubmitResponse

The SubmitResponse data type represents the response to an SPS Submit operation
request.

The SubmitResponse data type is derived from the TaskingResponse data type (see clause
7.3.1.4) and therefore inherits all the properties contained in that data type.
SubmitResponse neither restricts the content model of TaskingResponse nor adds
additional properties.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SubmitResponse/dataType

REQ 52. The SubmiResponse data type shall contain the properties
defined for the TaskingResponse data type.

A SubmitResponse contains a StatusReport (see clause 7.3.1.5) to inform about the result
of the requested operation. As a Submit request is a tasking request, the final result of that
request might not be directly available and would then be Pending. The contents of the
StatusReport properties after all possible state transitions are defined in table Table 31.

If the request is reported to be pending then a client needs to retrieve information about
the final status of the request in another way, per default by the GetStatus operation.

OGC 09-000

Co

Table 31 – StatusReport usage for different state transitions of a Submit request

task is in
execution

task is
already

completed
1

task is in
execution

task is
already

completed
1

task / 1

estimatedT
oC / 0..1 NA optional NA NA optional NA NA NA

event
(code) /

0..1
NA TaskSub

mitted
TaskComp

leted
NA TaskSub

mitted
TaskCom

pleted
NA

TaskingRe
questExpir

ed
percentCo
mpletion /

0..1
NA 0 100 NA 0 100 NA NA

procedure /
1

requestStat
us (code) /

1
Pending Accepted Accepted Rejected Accepted Accepted Rejected Rejected

statusMes
sage / 0..*
taskingPar
ameters /

0..1
taskStatus

(code) /
0..1

NA
InExecuti

on Completed NA
InExecuti

on
Complete

d NA NA

updateTim
e / 1

alternative

StatusRep
ort

encoded as
Reservatio

nReport

Applicable
in Submit
Response

yes yes yes yes no no no no

service may provide additional information to client in human readable form

NA

Initial → Accepted
Initial
→

Rejected

Initial
→

Pending

NA = not applicable, means element is not used in response

Notes:
1 this is a shortcut to convey information in the SubmitResponse that the Submit request was
accepted and the submitted task already made the transitions Initial → InExecution and
InExecution → Final (TaskCompleted)

may be provided by service

NA

property
name /

cardinality

new identifier provided by service

Pending → Accepted

Submit Request State Transitions
(From → To)

Pending
→

Rejected

Pending
→

Rejected
(request
expired)

point in time when transition was made

identifier previously provided by service

identifier of procedure for which Submit request was made

pyright © 2011 Open Geospatial Consortium 69

OGC 09-000

70 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SubmitResponse/taskAlreadyCompleted

REQ 53. If the SubmitResponse has taskStatus Completed then the
service shall have performed state logging and notification – if
supported – for the according task. That task then has made the
transitions Initial InExecution and InExecution Final
(TaskCompleted).

7.3.5.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SubmitResponse/exceptions

REQ 54. When an SPS server encounters an error while performing a
Submit operation, it shall return an exception message as
specified in clause 7.2.

7.3.5.6 Examples

Clause 9.6 provides example XML instances for the Submit operation request and
response.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 71

Issue Name: After Submission Notification Gap (JE, Dec 17th,09)

Issue Description: When a service implements publish/subscribe functionality
(see clause 8) and publishes notifications on status changes of submitted tasks,
then a client might miss notifications for his task unless he subscribed for status
changes of all tasks beforehand.

A client does not get the identifier for his task before it actually submitted it – only
the SubmitResponse contains the task identifier, which can then be used in a
subscription for notifications of that task. However, in the time it takes from the
actual submission to a completed subscription the service might already have
published notifications for the task. These notifications will be missed by the
client.

The same issue applies for task reservations.

The client could try to retrieve the missing status information via a GetStatus
request (see clause 7.3.6) using the since parameter in the request. However,
implementation of that parameter is optional for an SPS (see clause 7.3.2.4.3).

A client might also reserve the task first, then subscribe for it and then confirm it.
However, implementation of the Reserve operation is optional for SPS.

A solution could be to design an extension that allowed the inclusion of a
subscription request directly in the submit request (as a request extension
parameter), with the semantics that all notifications published for the task – if the
request is accepted – are in the scope of that subscription.

Resolution: What usually is important to the client is to get the most updated
status of his task. So if, right after submitting the task and subscribing for
notifications about it, the client issues a GetStatus request, the response of this call
fills the gap in the sense that the client is then aware of the latest status of the task
and that he will be notified of any further changes.

7.3.6 GetStatus Operation

7.3.6.1 Introduction

The GetStatus operation allows SPS clients to retrieve status reports about a tasking
request or a task. This operation is the default mechanism to retrieve status information
about a task or tasking request.

As explained in clause 6.3.6, a task or tasking request makes one or more state transitions
before reaching its final state (see Figure 8 and Figure 9 in clause 6.3.6). While not in the
final state, a task can transition between several other states.

Clients can retrieve a status report via the GetStatus operation. The response to the
operation either contains a (number of) StatusReport(s) or ReservationReport(s).

OGC 09-000

72 Copyright © 2011 Open Geospatial Consortium

By default, the GetStatusResponse contains a single status report. This report identifies
the current/latest state of a task/tasking request. The updateTime parameter in the report
defines when that state was entered.

SPS servers announce in their Capabilities if all state changes are tracked for non-
finalized tasks and tasking requests (see clauses 7.3.2.4.3 and 7.3.3.3); this also defines
how long a service needs to keep the according information before it can discard it.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetStatus/service-metadata/since-parameter

REQ 55. If an SPS service logs the complete state history of non-
finalized tasks and tasking requests and thus supports the state
logger conformance class (see subclause 7.3.2.4.3), it shall add
the parameter since to the metadata of the GetStatus operation in
the OperationsMetadata section of the service’s Capabilities
document. The value of this parameter shall be ows:AnyValue.

If supported by the server, clients can request the status history of a task/tasking request
by using a GetStatus request with since parameter. If supported, the SPS shall return all
status reports it has stored for the task, with an updateTime that is not before and not after
the time period defined with the since time as begin position and the point in time when
the GetStatus request was received by the service as end position.

If the GetStatusResponse contains multiple status reports then it is recommended that the
service lists them in ascending temporal order regarding the update time of each report.

If the since parameter is used in a GetStatus request then the response may not contain
any StatusReport in case that no status transition happened in that period. To retrieve the
current status, an additional GetStatus request without since parameter becomes
necessary. This standard behaviour could be overwritten in an extension to this standard.
For example, it could be enforced that at least the last valid StatusReport would be
returned. This behaviour was intentionally avoided here to allow for an operation that
checks if any status updates happened in a given time period in the past.

7.3.6.2 Data Types

The conceptual model of the GetStatus operation is shown in the following UML
diagram.

OGC 09-000

Co

Figure 20 — Data types of the GetStatus operation

The details of the operation request and response are explained in the following
subclauses.

7.3.6.3 Operation Request - GetStatus

Sending an instance of the GetStatus data type to the service performs an SPS GetStatus
operation request.

pyright © 2011 Open Geospatial Consortium 73

OGC 09-000

74 Copyright © 2011 Open Geospatial Consortium

The GetStatus data type is derived from the SWES ExtensibleRequest data type specified
in clause 9 of [OGC 09-001] and therefore inherits all the properties contained in that
data type. GetStatus does not restrict the content model of ExtensibleRequest.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetStatusRequest/dataType

REQ 56. The GetStatus data type shall contain the properties defined for
SWES ExtensibleRequest. In addition, it shall contain the
properties according to Table 32.

Table 32 — Properties in the GetStatus data type

Name Definition Data type and values Multiplicity and use
task Pointer to the task for

which status
information is
requested.

Task id
see clause 7.3.1.6
value as provided by

SPS in response to a
previous tasking
request

One (mandatory)

since point in time in the past
that denotes the begin
of the time period –
ended by the time when
the request was
received by the service
– for which status
reports of the identified
task are requested

DateTime
(see ISO 19103 and

OGC 07-036 Table
D.2)

value shall be a point in
time in the past

One to zero (optional)
if not provided in the

request only the latest
state shall be reported
(default behavior of the
operation)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.6.4 Operation Response - GetStatusResponse

The GetStatusResponse data type represents the response to an SPS GetStatus operation
request.

The GetStatusResponse data type is derived from the SWES ExtensibleResponse data
type (see clause 9 of [OGC 09-001] and therefore inherits all the properties contained in
that data type. GetStatusResponse does not restrict the content model of
ExtensibleResponse.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 75

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetStatusResponse/dataType

REQ 57. The GetStatusResponse data type shall contain the properties
defined for SWES ExtensibleResponse. In addition, it shall
contain the property according to Table 33.

Table 33 — Properties in the GetStatusResponse data type

Name Definition Data type and values Multiplicity and use
status status report providing

information about the
current or – if
requested via the
“since” parameter – a
previous state of the
requested task/tasking
request

StatusReport (see
7.3.1.5)

Property usage for
providing status
information of a
GetFeasibility or
Update request as
defined in Table 34, of
a Reserve or Submit
request as defined in
Table 35 and for a

scheduled task as
defined in Table 36 &
Table 37; all tables
also indicate when a
ReservationReport
rather than a
StatusReport is used
to encode the status
information

Zero to many (mandatory)
whether zero, one or more

reports are contained in
the GetStatus response
depends on the status of
the task/tasking request
(it could have made only
one transition but also
more), if the service
supports the since
parameter (if not then
only the current status is
returned) and that
parameter is actually
used in the request (even
though clients may have
the option to request
more status information,
without using the ‘since’
parameter they are only
interested in the current
status)

The following tables define in more detail how status reports are used in a GetStatus
operation response to provide status information of a task or tasking request.

With the GetStatus operation it is possible to retrieve the currently valid tasking
parameter values. For performance reasons, the current tasking parameter settings are
omitted from tasking request responses. In contrast, tasking request respones may contain
alternative sets of tasking parameters, which is not possible in GetStatus responses.

OGC 09-000

76 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetStatusResponse/informationExtent

REQ 58. If the since option (i.e., the state logger conformance class) is
supported by the service and a client uses the parameter in a
GetStatus request to retrieve the status of a Reserve or Submit
tasking request, then all state information shall be returned on
that tasking request, including information about the task which
was scheduled once the tasking request was accepted.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetStatusResponse/validTime

REQ 59. Status information is only reported if the according
status/reservation report updateTime falls within the reporting
period as defined in Figure 21and Figure 22.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetStatusResponse/informationExtent2

REQ 60. If the GetStatus request was intended to retrieve the status of a
task but the since parameter denotes a point in time when the
tasking request that caused the task was not yet finalized, then
the information on that tasking request shall also be included in
the response, together with all status information about the task.

The following figure depicts some exemplary tasks/tasking request in the left column and
corresponding state transitions on a time axis running from left to right in the main
window. The arrows indicate the lifetime of tasks and tasking requests. The vertical lines
indicate state transitions.

Given a GetStatus request with since parameter defining the time period shown in the
figure, the StatusReport contains information only about state transitions highlighted in
red. In contrast, unreported state transitions that are illustrated as thin grey bars. As
shown, only state transitions within the time period are reported.

OGC 09-000

Co

Figure 21 – Status information returned for various exemplary tasks/tasking
requests when the “since” parameter was used in GetStatus request

Figure 22 illustrates the information returned for the same tasking situation, but the
GetStatus operation is used without the since parameter.

pyright © 2011 Open Geospatial Consortium 77

OGC 09-000

78 Co

Figure 22 – Status information returned for various exemplary tasks/tasking
requests when the “since” parameter was not used in GetStatus request

In this situation, the latest status is reported each time. This scenario assumes that the
SPS server hasn’t deleted any information about finalized tasks yet. See section 7.3.3.3
for more information on status hold-back time.

Table 34 provides an overview of the usage of the various StatusReport properties in a
GetStatus response for tasking requests generated in consequence of GetFeasibility and
Update requests. Table 35 provides the same information for tasking requests generated
in consequence of Reserve and Submit requests.

Once the tasks are scheduled, i.e. the tasking request was accepted, the properties shall be
used as illustrated in Table 36 and Table 37.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 79

Table 34 – Providing status information on GetFeasibility and Update requests
property

name/cardinality
State Transition (From To)

 Initial
Pending

Initial | Pending
 Accepted

Initial | Pending
 Rejected

Pending
Rejected

(TaskingRequestE
xpired)

task/1 identifier provided in GetStatus request 1

estimatedToC/0..1 NA 2

event (code)/0..1 NA NA NA TaskingRequestExp
ired

percentCompletion
/0..1

NA 3

procedure/1 identifier of procedure that GetFeasibility request was made for/that
belongs to task for which Update request was made

requestStatus
(code)/1

Pending Accepted Rejected Rejected

statusMessage/0..* service may provide additional information to client in human readable
form

taskingParameters/
0..1

NA parameters used in
tasking request

parameters used
in tasking request

parameters used in
tasking request

taskStatus
(code)/0..1

NA

updateTime/1 point in time when transition into new state was made

alternative/0..* NA

StatusReport is
Encoded as

ReservationReport

NA

NA = not applicable, means that property is not used in the response

Notes:
1 has to be an identifier known to the service (otherwise an exception is thrown)
2 only applicable to scheduled tasks that have not been finalized yet
3 only applicable to scheduled tasks that are being or have been executed

OGC 09-000

80 Copyright © 2011 Open Geospatial Consortium

Table 35 – Providing status information on Reserve and Submit requests
property

name/cardinality
State Transition (From To)

 Initial
Pending

Initial | Pending
Accepted /

Reserved (tasking
request was

Reserve)

Initial | Pending
Accepted /

InExecution (tasking
request was Submit)

Initial |
Pending

Rejected

Pending
Rejected

(TaskingReq
uestExpired)

task/1 identifier provided in request 1

estimatedToC/0..1 NA optional optional NA NA

event (code)/0..1 NA TaskReserved TaskSubmitted NA TaskingRequ
estExpired

percentCompletion
/0..1

NA NA 0 NA NA

procedure/1 identifier of procedure that Reserve/Submit request was made for

requestStatus
(code)/1

Pending Accepted Accepted Rejected Rejected

statusMessage/0..* service may provide additional information to client in human readable form

taskingParameters/
0..1

NA parameters used in
tasking request

parameters used in
tasking request

parameter
s used in
tasking
request

parameters
used in
tasking
request

taskStatus
(code)/0..1

NA Reserved InExecution NA NA

updateTime/1 point in
time when
transition
was made

point in time when
transition into

Accepted/Reserved
state was made

point in time when
transition into

Accepted/InExecution
state was made

point in
time when
transition
was made

point in time
when

transition was
made

alternative/0..* NA

StatusReport is
Encoded as

ReservationReport

no yes no no no

NA = not applicable, means that the element is not used in the response
Notes:
1 has to be an identifier known to the service (otherwise an exception is thrown)

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 81

Table 36 – Providing status information on scheduled tasks (part 1)
property

name/cardinality
State Transition (From To)

 Reserved
Reserved

(task
updated)

Reserved
InExecution

(task
confirmed)

InExecution
InExecution

(task updated)

InExecution
InExecution

(data published)

task/1 identifier provided in request 1

estimatedToC/0..1 optional

event (code)/0..1 TaskUpdated TaskConfirmed TaskUpdated DataPublished

percentCompletion
/0..1

optional 0 optional optional

procedure/1 identifier of procedure associated to the task

requestStatus
(code)/1

Accepted

statusMessage/0..* service may provide additional information to client in human
readable form

taskingParameters/
0..1

parameters
used in
update
request

NA parameters used
in update request

NA

taskStatus
(code)/0..1

Reserved InExecution InExecution InExecution

updateTime/1 point in time when transition was made

alternative/0..* NA

StatusReport is
Encoded as

ReservationReport

yes no no no

NA = not applicable

Notes:
1 has to be an identifier known to the service (otherwise an exception is thrown)

OGC 09-000

82 Copyright © 2011 Open Geospatial Consortium

Table 37 – Providing status information on scheduled tasks (part 2)
property

name/cardinality
State Transition (From To)

 Reserved
Final

(ReservationEx
pired)

InExecution
Final

(TaskComplete
d)

Scheduled
(Reserved or

InExecution)
Final

(TaskCancelled)

Scheduled
(Reserved or

InExecution)
Final

(TaskFailed)

task/1 identifier provided in request 1

estimatedToC/0..1 NA 2

event (code)/0..1 ReservationExp
ired

TaskCompleted TaskCancelled TaskFailed

percentCompletio
n/0..1

NA 100 optional optional

procedure/1 identifier of procedure associated to the task

requestStatus
(code)/1

Accepted

statusMessage/0..
*

service may provide additional information to client in human readable
form

taskingParameters
/0..1

NA

taskStatus
(code)/0..1

Expired Completed Cancelled Failed

updateTime/1 point in time when transition into new state was made

alternative/0..* NA

StatusReport is
Encoded as

ReservationRepor
t

yes no no no

NA = not applicable

Notes:
1 has to be an identifier known to the service (otherwise an exception is thrown)
2 only applicable to scheduled tasks that have not been finalized yet

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 83

7.3.6.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetStatusResponse/exceptions

REQ 61. When an SPS server encounters an error while performing a
GetStatus operation, it shall return an exception message as
specified in clause 7.2. In addition:

• If a GetStatus request contains a “since” property but the
server does not support state logger functionality (i.e., it
only keeps track of the current/last status of a
task/tasking request - see clause 7.3.2.4.3 for further
information), an exception with code
OptionNotSupported and locator value since shall be
thrown.

• If an SPS has removed status information for a requested
task/tasking request after the required provision time has
passed, it shall throw an StatusInformationExpired
exception.

7.3.6.6 Examples

Clause 9.6 provides example XML instances for the GetStatus operation request and
response.

7.3.7 GetTask Operation

7.3.7.1 Introduction

The GetTask operation allows SPS clients to retrieve complete information about a given
task or tasking request. Currently, this operation is only marginal different from
GetStatus. The main reason for this operation is to serve as an extension point for future
extensions to this standard.

This includes status information about the task. Per default only the latest status is
provided by an SPS. If state logger functionality is supported by the service (see clause
7.3.2.4.3) then the complete state history shall be returned. If the GetTaskResponse
contains multiple status reports then it is recommended that the service lists them in
ascending temporal order regarding the update time of each report.

However, a service may discard such information after a certain point in time. This point
in time is defined by the minStatusTime value provided in the Contents section (see
clause 7.3.3.3) of the service’s Capabilities document. In that case the service throws an
according exception.

OGC 09-000

84 Co

7.3.7.2 Data Types

The conceptual model of the GetTask operation is shown in the following UML diagram.

Figure 23 — Data types of the GetTask operation

The details of the operation request and response are explained in the following
subclauses.

7.3.7.3 Operation Request – GetTask

Sending an instance of the GetTask data type to the service performs an SPS GetTask
operation request.

The GetTask data type is derived from the SWES ExtensibleRequest data type specified
in clause 9 of [OGC 09-001] and therefore inherits all the properties contained in that
data type. GetTask does not restrict the content model of ExtensibleRequest.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetTaskRequest/dataType

REQ 62. The GetTask data type shall contain the properties defined for
SWES ExtensibleRequest. In addition, it shall contain the
property according to Table 38.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 85

Table 38 — Properties in the GetTask data type

Name Definition Data type and values Multiplicity and use
task Pointer to the task on

which information is
requested.

Task id
see clause 7.3.1.6

One to many (mandatory)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.7.4 Operation Response – GetTaskResponse

The GetTaskResponse data type represents the response to an SPS GetTask operation
request.

The GetTaskResponse data type is derived from the SWES ExtensibleResponse data type
(see clause 9 of [OGC 09-001] and therefore inherits all the properties contained in that
data type. GetTaskResponse does not restrict the content model of ExtensibleResponse.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetTaskResponse/dataType

REQ 63. The GetTaskResponse data type shall contain the properties
defined for SWES ExtensibleResponse. In addition, it shall
contain the property according to Table 39.

Table 39 — Properties in the GetTaskResponse data type

Name Definition Data type and values Multiplicity and use
task the task that was

requested
Task
see clause 7.3.1.6

One to many (mandatory)

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetTaskResponse/properties

REQ 64. A task (or tasking request) contained in the GetTaskResponse shall
provide status information for the state transition(s) it made according
to Table 34 to Table 37.

To clarify which status information is provided for a task in the GetTaskResponse, we
consider the possible cases. If the state logger conformance class is not supported by the
service then per default the service only stores the latest state of a task/tasking request. As
a result, only information about the latest status would be included in the
GetTaskResponse for a task – this is similar to the situation for the GetStatus operation
depicted in Figure 22. If, on the other hand, the state logger conformance class is

OGC 09-000

86 Co

supported by the service then the complete status information of a task/tasking request
shall be provided in the GetTaskResponse. Figure 24 shows exemplary cases.

Figure 24 – Status information returned in the GetTaskResponse for various
exemplary tasks/tasking requests when the state logger conformance class is

supported by the service

7.3.7.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetTaskResponse/exceptions

REQ 65. When an SPS server encounters an error while performing a
GetTask operation, it shall return an exception message as
specified in clause 7.2. In addition, if the minimum storage time
of status information for finalized tasks has passed and the
service already removed that information, it shall throw a
StatusInformationExpired exception.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 87

7.3.7.6 Examples

Clause 9.6 provides example XML instances for the GetTask operation request and
response.

7.3.8 DescribeResultAccess Operation

7.3.8.1 Introduction

The DescribeResultAccess operation allows SPS clients to retrieve information on how to
access data that was produced by a specific task, or how to retrieve data for a given
sensor that is tasked by this SPS in general. The response can point to:

• a SOS, WMS, WFS

• any other OGC Web Service that provides data

• any data file or folder on an ftp server

• any data file or file container that is accessible over the Internet

Clients provide the identifier of either a sensor or task to identify the information they are
interested in. Table 40 defines the semantics that of both variations.

Table 40 — Semantics of DescribeResultAccess operation request using task or
procedure identifier

DescribeResultAccess
request

DescribeResultAccess response Applicable Reference
Usage Options (see

Table 41)
including a procedure

identifier
Reference(s) that points to the service(s)

providing data for that procedure. The
response contains the base URL to the
service. It is then the client's task to
explore all available data.

Primarily useful to learn in advance at
which service types/instances or via
which protocols data is going to be made
available.

3, 5

including task
identifier

Reference(s) to the concrete data of the
specified task (concrete file/folder on a
server, full [OGC] service request that
delivers all data etc.)

1, 2, 3, 4, 5
option 3 should be
avoided if possible 1

Notes:
1) When providing information about a task, option 3 is the easiest solution for SPS providers but the
hardest for clients. However, in some domains the link to the service might already suffice as additional
information and constraints enable clients to create the request for retrieving their data themselves.
Security issues may also require this option to be used.

The result contains one or more reference group elements, which are defined by [OGC
06-121r3], to describe where data is or will be stored.

OGC 09-000

88 Copyright © 2011 Open Geospatial Consortium

7.3.8.1.1 Reference group usage

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccess/referenceGroup/procedure

REQ 66. If the DescribeResultAccess request contains a procedure
identifier (see Table 40), then the response shall contain one or
many ReferenceGroup(s) with references to the possible data
storage locations/services for that procedure.

In most cases a single group will be used, but there are
situations that require the usage of multiple groups, as described
further below.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccess/referenceGroup/task

REQ 67. If the DescribeResultAccess contains a task identifier then each
ReferenceGroup shall describe the complete data set that was
gathered for the requested task.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccess/referenceGroup/incremental

REQ 68. If an SPS server publishes data gathered for a task
incrementally, then new references shall be added to the
according reference group(s). Clients can differentiate new
references from those they already received by the identifier
provided with each reference.

The reference group(s) contains all references required to access the data gathered for a
specific task once the task is complete. Before, the set of references in a group can be
incomplete, as new references are added whenever new data was published and thus
made accessible to clients.

It may happen that all data for a given task will be published towards the end of the
lifetime of a task. In this case, a DescribeResultAccess would yield no results before the
status of the task is set to Final. In some cases published data might also be temporarily
unavailable due to failures of the data services. Both situations are recognized by this
standard and can be communicated via the DescribeResultAccessResponse to clients.

The main purpose of allowing more than one reference group in a
DescribeResultAccessResponse is to support the provision of data

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 89

• in various forms of data representations – data can be published as raw binary
data, O&M encoded observations, NetCDF files, image files, video streams etc.

• in various processing stages – data can be published as received by the sensor,
after level-1 quality checks were performed, level-2 quality checks etc.

• in various storage stages – in some domains data is made accessible in some kind
of immediately accessible cache but soon after a task/mission was completed the
data is moved from there to a long-term data archive

• via different protocols – access to data may be performed via FTP, HTTP etc.

As an example, an SPS server may use some transient storage to make intermediate
results available to the client in various representations using diverse access protocols.
Once the next processing step is reached, this data becomes obsolete and some references
in the reference groups might be removed, updated, or simply superseded by new
reference groups that now point to the next level data. The SPS server would
continuously update the reference groups, and clients can differentiate them from those
they already know via the identifier assigned to each group by the service.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccess/referenceGroup/Aggregation

REQ 69. Any SPS shall aggregate references in reference groups
according to Table 41.

How references are used in reference groups is defined in the following clause.

7.3.8.1.2 Reference usage

SPS does not provide a direct data access operation. Instead, it provides references to the
data or services hosting the data. The various options in describing the data access are
outlined in Table 41. Further on, it describes the concrete semantics and usage of the
ReferenceGroup properties in detail.

OGC 09-000

90 Copyright © 2011 Open Geospatial Consortium

Table 41 – Service Reference Mapping

Option SPS provides Used elements of DescribeResultAccessResponse Cardinality
1 a URL that

contains the
full request
string to be
sent against
the data
service

information

encoded as
OWS
Common
Reference

reference (URI): Full request as sent to data service
using HTTP GET

1

role (URI): describes the role of this reference, in
other words what the SPS provides with this
reference

value shall be identifier for this reference option:
http://www.opengis.net/spec/SPS/2.0/referenceTyp

e/FullURLAccess

1

title (String): Human readable title for this
reference

0..1

identifier (URI): unique identifier for the reference 1
abstract (String with optional language code): Brief

narrative description of this reference (for
example what it references), normally available
for display to a human

0..*

format (mime type): defines the response format as
provided by data service

(Table 42 provides guidance)

1

metadata (AbstractMetadata, at least one
SPSMetadata shall be included): provides
specific metadata for (service) references given in
a DescribeResultAccessResponse – in case of
SPSMetadata it identifies the specification that
defines the type of service/method used for
accessing data (see Table 50).

1..*

http://www.opengis.net/spec/SPS/2.0/referenceType/FullURLAccess
http://www.opengis.net/spec/SPS/2.0/referenceType/FullURLAccess

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 91

Option SPS provides Used elements of DescribeResultAccessResponse Cardinality
2 XML encoded

query to be
sent against
service using
HTTP POST

information

encoded as
OWS
Common
ServiceRefer
ence

reference (URI): Service URL 1
role (URI): describes the role of this reference, in

other words what the SPS provides with this
reference

value shall be identifier for this reference option:
http://www.opengis.net/spec/SPS/2.0/referenceTyp

e/FullServiceAccess

1

title (String): Human readable title for this
reference

0..1

identifier (URI): unique identifier for the reference 1
abstract (String with optional language code): Brief

narrative description of this reference (for
example what it references), normally available
for display to a human

0..*

format (mime type): defines the response format as
provided by data service

(Table 42 provides guidance)

1

requestMessage (String): The XML-encoded
operation request message to be sent to the URI
provided in xlink:href

OR
requestMessageReference (URI): Reference to the

XML-encoded operation request message to be
sent to the URI provided in xlink:href

1

metadata (AbstractMetadata, at least one
SPSMetadata shall be included): provides
specific metadata for (service) references given in
a DescribeResultAccessResponse – in case of
SPSMetadata it identifies the specification that
defines the type of service/method used for
accessing data (see Table 50).

1..*

http://www.opengis.net/spec/SPS/2.0/referenceType/FullServiceAccess
http://www.opengis.net/spec/SPS/2.0/referenceType/FullServiceAccess

OGC 09-000

92 Copyright © 2011 Open Geospatial Consortium

Option SPS provides Used elements of DescribeResultAccessResponse Cardinality
3 Link to

service.
Client needs
to explore
the service
itself

information

encoded as
OWS
Common
Reference

reference (URI): service URL 1
role (URI): describes the role of this reference, in

other words what the SPS provides with this
reference

value shall be identifier for this reference option:
http://www.opengis.net/spec/SPS/2.0/referenceTyp

e/ServiceURL

1

title (String): Human readable title for this
reference

0..1

identifier (URI): unique identifier for the reference 1
abstract (String with optional language code): Brief

narrative description of this reference (for
example what it references), normally available
for display to a human

0..1

format (mime type): defines the response format as
provided by data service if it can be identified

(Table 42 provides guidance)

0..1

metadata (AbstractMetadata, at least one
SPSMetadata shall be included): provides specific
metadata for (service) references given in a
DescribeResultAccessResponse – in case of
SPSMetadata it identifies the specification that
defines the type of service/method used for
accessing data (see Table 50).

1..*

4 Resource on a
server (e.g.
file or
dynamically
created
resource like
video
stream)

information

encoded as
OWS
Common
Reference

reference (URI): Link to the file on a server,
transport protocol is implied by URI

1

role (URI): describes the role of this reference, in
other words what the SPS provides with this
reference

value shall be identifier for this reference option:
http://www.opengis.net/spec/SPS/2.0/referenceTyp

e/Resource

1

title (String): Human readable title for this
reference

0..1

identifier (URI): unique identifier for the reference 1
abstract (String with optional language code): Brief

narrative description of this reference (for
example what it references), normally available
for display to a human

0..*

format (mime type): defines the mimeType of the
resource

(Table 42 provides guidance)

1

http://www.opengis.net/spec/SPS/2.0/referenceType/ServiceURL
http://www.opengis.net/spec/SPS/2.0/referenceType/ServiceURL
http://www.opengis.net/spec/SPS/2.0/referenceType/Resource
http://www.opengis.net/spec/SPS/2.0/referenceType/Resource

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 93

Option SPS provides Used elements of DescribeResultAccessResponse Cardinality
5 Folder on a

server

information

encoded in:
ows:Reference

reference (URI): Link to the folder on a server 1
role (URI): describes the role of this reference, in

other words what the SPS provides with this
reference

value shall be identifier for this reference option:
http://www.opengis.net/spec/SPS/2.0/referenceTyp

e/Folder

1

title (String): Human readable title for this
reference

0..1

identifier (URI): unique identifier for the reference 1
abstract (String with optional language code): Brief

narrative description of this reference (for
example what it references), normally available
for display to a human

0..*

format (ows:MimeType): defines the mimeType of
the files in that folder (in case they are
homogeneous)

0..1
provide if

files in
folder
(will)
have

homogene
ous

format/mi
me type

Options 1 and 2 provide full service access, either via a GET request or via an XML
encoded POST request to be sent to the service in order to retrieve task data. However, a
client may still need to modify a given request before it can actually execute it, for
example if security conditions apply that require request enrichment with security
elements such as tokens, signatures, etc.

Operation requests wrapped in a SOAP envelope are another example. If for example
WS-Addressing is used, then the SPS may provide a value for the wsa:Action element.
However, for the wsa:ReplyTo element it can only state the anonymous endpoint (and
even that may not be permitted by the referenced service so the SPS would have to omit
the wsa:ReplyTo element in the given request) while it cannot provide a meaningful value
for the wsa:MessageID element. See example provided in clause 9.6.6for further
information.

http://www.opengis.net/spec/SPS/2.0/referenceType/Folder
http://www.opengis.net/spec/SPS/2.0/referenceType/Folder

OGC 09-000

94 Co

Table 42 – Examples of applicable mime types when referencing data

Reference resolves to applicable mime type 1
SOS GetObservation response application/xml

O&M Observation 2.0 XML instance application/gml+xml
SensorML 1.0.1 XML instance application/xml

PNG image image/png
JPEG 2000 image image/jp2
MP-4 video file video/mp4

Motion JPEG 2000 video file video/mj2
Notes:
1 The provision of a mime type does not mean that this is the only one applicable. For example in case of a
SOS GetObservation response the according request could ask for a different response format other than the
default one. The returned XML could also be binarized, resulting in another mime type (e.g.
application/exi).

Figure 25 illustrates the mapping of OWS Common (Service) Reference properties to the
elements and attributes of the according XML type.

OwsCommon References are used as follows:

Figure 25 — Mapping of UML Reference elements to XML Schema elements.
Rarely used elements are grayed out

Note: Data production as a result of tasking a sensor and subsequent data access are two decoupled
processes. Theoretically, the SPS might use a number of data storage services to store the data (e.g. for
performance reasons). This leads to the situation that the SPS returns a list of data references for a given
sensor identifier. Then, it is up to the client to explore those services to discover the relevant data.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 95

Note: in XML Schema, an ows:Reference element allows a number of metadata information to be provided
to clients. This can be used to provide further information about or for accessing the referenced data (for
example metadata about the processing applied to the referenced data). At the moment no model for such
specific metadata is defined. However, according models could be defined in other documents – like it is
done in clause 7.3.8.10 – and used by an SPS. Clients that do not understand such metadata can simply
ignore it.

If the service supports publish/subscribe functionality, it sends notifications to the client
to indicate that new data is available. It is up to the SPS instance to decide when it
publishes data. However, sending a task completed notification to clients implies that all
data generated for the task has been published and that there will be no more data
published notification.

In case that no data is available for a given task, the service returns a DataNotAvailable
data type giving the reason why the data is not available.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccess/duration

REQ 70. An SPS shall provide result access information for a task at least
as long as it provides status information for that task (clause
7.3.3.3 defines how long that information has to be stored at
minimum).

A service should provide this information longer. How much longer is not defined by this
standard. Specific application domains and/or profiles and extensions can define this in
more detail.

7.3.8.2 Data Types

The conceptual model of the DescribeResultAccess operation is shown in the following
UML diagram.

OGC 09-000

96 Co

Figure 26 — Data types of the DescribeResultAccess operation

The details of the operation request and response are explained in the following
subclauses.

7.3.8.3 Operation Request – DescribeResultAccess

Sending an instance of the DescribeResultAccess data type to the service performs an
SPS DescribeResultAccess operation request.

The DescribeResultAccess data type is derived from the SWES ExtensibleRequest data
type specified in clause 9 of [OGC 09-001] and therefore inherits all the properties

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 97

contained in that data type. DescribeResultAccess does not restrict the content model of
ExtensibleRequest.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccessRequest/dataType

REQ 71. The DescribeResultAccess data type shall contain the properties
defined for SWES ExtensibleRequest. In addition, it shall
contain the property according to Table 43.

Table 43 — Property in the DescribeResultAccess data type

Name Definition Data type and values Multiplicity and use
target Pointer to either a task or

procedure.
TaskOrProcess, see

clause 7.3.8.4 further
below

One (mandatory)

7.3.8.4 TaskOrProcess

In a DescribeResultAccess request, the ID of either a task or procedure is used to define
the semantics of the request.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskOrProcess/dataType

REQ 72. The TaskOrProcess union shall contain one of the
properties/choices according to Table 44.

OGC 09-000

98 Copyright © 2011 Open Geospatial Consortium

Table 44 — Properties in the TaskOrProcess union

Name Definition Data type and values Multiplicity and use
task Pointer to a task. Task id, see clause

7.3.1.6
value shall point to a

task that is or was
executed by the
service

One (mandatory)
Because TaskOrProcess is

a union, either a task or
procedure shall be used
(i.e. there is a choice
between the properties)

procedure Pointer to a procedure
tasked by the service.

OM_Process id, see ISO
DIS 19156

value shall point to one
of the procedures
listed in the service’s
contents section

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.8.5 Operation Response - DescribeResultAccessResponse

The DescribeResultAccessResponse data type represents the response to an SPS
DescribeResultAccess operation request.

The DescribeResultAccessResponse data type is derived from the SWES
ExtensibleResponse data type specified in clause 9 of [OGC 09-001] and therefore
inherits all the properties contained in that data type. DescribeResultAccessResponse does
not restrict the content model of ExtensibleResponse.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccessResponse/dataType

REQ 73. The DescribeResultAccessResponse data type shall contain the
properties defined for SWES ExtensibleResponse. In addition, it
shall contain the properties according to Table 45.

Table 45 — Property in the DescribeResultAccessResponse data type

Name Definition Data type and values Multiplicity and use
availability indicates that data is

available or not
AvailableOrNot, see

clause 7.3.8.6
One (mandatory)

7.3.8.6 AvailableOrNot

A DescribeResultAccessResponse either indicates that data gathered in a task is available
at given service references or that it is not available for some reason.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 99

Requirement

http://www.opengis.net/spec/SPS/2.0/req/AvailableOrNot/dataType

REQ 74. The AvailableOrNot union shall contain the properties/choices
according to Table 46.

Table 46 — Properties in the AvailableOrNot union

Name Definition Data type and values Multiplicity and use
available indicates that task data is

available and contains
(service) reference(s) to
retrieve the data

DataAvailable, see
clause 7.3.8.7

One (mandatory)
Because AvailableOrNot

is a union, either
available or unavailable
shall be used (i.e. there
is a choice between the
properties)

unavailable indicates that data is not
available and explains
why it is not available

DataNotAvailable, see
clause 7.3.8.8

7.3.8.7 DataAvailable

This data type contains a list of one or more groups of service references. They point to
services that generally store data from the requested procedure. They can also point to the
data directly. Distributing data across several service instances can be performed inside a
reference group. The response can contain more than one ReferenceGroup, if the
application design requires it (see clause 7.3.8.1).

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DataAvailable/dataType

REQ 75. The DataAvailable data type shall contain the property
according to Table 47.

Table 47 — Property in the DataAvailable data type

Name Definition Data type and values Multiplicity and use
dataReference group of (service)

references with
which the complete
set of data gathered
for a task can be
retrieved

ReferenceGroup, see
table 46 in [06-121r3]

One or more (mandatory)
use of ReferenceGroup

and contained
(Service)References as
defined in clause 7.3.8.1

OGC 09-000

100 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccessResponse/identification

REQ 76. The service shall assign a unique identifier for each
ReferenceGroup and the references contained in that group.
Those identifiers shall not be changed while the according
object (reference group or reference) exists.

Note: thus for example a change to the set of references contained in a reference group does not change the
identifier of this group.

7.3.8.8 DataNotAvailable

This data type expresses that no data is available.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DataNotAvailable/dataType

REQ 77. The DataNotAvailable data type shall contain the properties
according to Table 48.

Table 48 — Properties in the DataNotAvailable data type

Name Definition Data type and values Multiplicity and use
message human readable

message that
provides further
information or reason
why no data is
available

LanguageString, see clause 10.7
in [OGC 06-121r3]

Zero or more
(optional)

Include one for each
language
represented

unavailabl
eCode

identifies the reason
why data is
unavailable

UnavailableCode, see clause
7.3.8.9

One (mandatory)

7.3.8.9 UnavailableCode

This type is a list of codes signifying the reason why result access information for a given
task or sensor is not available.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 101

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccessResponse/UnavailableCode

REQ 78. The UnavailableCode code list shall contain the
properties/choices according to Table 49.

Table 49 — Properties in the UnavailableCode code list

Name a Definition Value
DataNotAvailable Result access information is not available

because no data has been published yet.
“DataNotAvailable”

DataServiceUnava
ilable

Result access information is not available
because one or more of the services that are
assigned to store the data gathered in a task
is currently unavailable.

“DataServiceUnavailable”

a Although some values listed in the column appear to contain spaces, they shall not contain spaces.

The code list is extensible. The pattern for new codes is the regular expression:

other: [A-Za-z0-9_]{2,}

However, for interoperability reasons a service should not use an arbitrary code that is
not defined by an official SPS extension.

7.3.8.10 SPSMetadata

This data type provides SPS specific metadata for (service) references given in a
DescribeResultAccessResponse.

The SPSMetadata data type is derived from the OWS Common AbstractMetadata data
type [OGC 06-121r3]. That data type does not define any property and thus SPSMetadata
does not inherit any property from it. However, it is a child of AbstractMetadata and thus
is a valid substitute whenever such metadata is provided, for example in references (see
clause 7.3.8.1.2).

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccessResponse/SPSMetadata

REQ 79. The SPSMetadata data type shall contain the properties
according to Table 50.

OGC 09-000

102 Copyright © 2011 Open Geospatial Consortium

Table 50 — Properties in the SPSMetadata data type

Name Definition Data type
and

values

Multiplicity and use

dataAcces
sType

Identifies the
specification
that defines
the type of
service/meth
od used for
accessing
data.

URI one (mandatory)
Use the following URIs with given priority:
1) URI that uniquely identifies the operation with

which data is accessed 1 – example:
http://www.opengis.net/sos/2.0/GetObservation ,

2) target namespace of the XML Schema definition
for the operation/service via which data is
accessed 2– example:
http://www.opengis.net/wcs/1.1 or
http://nonogc.org/operation/x,

3) the OGC name of the specification where the
operation is defined in 2– example:
http://www.opengis.net/doc/IS/WMS/1.3,

4) http://www.opengis.net/def/nil/OGC/0/unknown
if no specific URI is known that uniquely
identifies the service/method

Notes:
1) Whenever the SOAP binding of a service specification defines action URIs for its operations, the
action URI for the operation request is a suitable value to use. This URI can also be used to identify the
operation even if its KVP binding is actually used in a reference.
2) References that provide the service URL only but not a full GET or POST request with which the data
can be retrieved may not be able to state via which specific operation data is retrieved. In that case the
provision of the target namespace assigned to the XML Schema of the service suffices – if it uniquely
identifies one specific version of that specification. Otherwise another identifier for the specification
(version) – for OGC specifications this could be the OGC name of the document – should be used.

The SPSMetadata data type can be subclassed, for example by extensions to this
specification, to provide additional metadata if required. Such extensions can also define
their own data type that derives from OWS Common AbstractMetadata and properly
specify when it needs to be included in (service) references.

7.3.8.11 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/DescribeResultAccesResponse/exceptions

REQ 80. When an SPS server encounters an error while performing a
DescribeResultAccess operation, it shall return an exception
message as specified in clause 7.2.

7.3.8.12 Examples

Clause 9.6 provides example XML instances for the DescribeResultAccess operation
request and response.

http://www.opengis.net/def/nil/OGC/0/unknown

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 103

7.3.9 Reserve Operation

7.3.9.1 Introduction

The Reserve operation allows SPS clients to reserve a task. The client encodes the tasking
parameters according to the parameter description do a DescribeTasking response. Thus,
reserving a task is practically similar to submitting a task, except that the task is not
performed until the client sends a Confirm request.

The Reserve operation is part of the ReservationManager interface (see clause 7.1). A
reservation can be cancelled sending a Cancel request at any time.

Clients can set expiration time for reserved tasks. If the service does not accept the
reservation time, it rejects the request and provides an appropriate message explaining the
reason. Otherwise the service reserves the task until the reservation expires or the client
confirmed or cancelled the reservation. SPS servers provide reservation time in case the
client provides no timing in the request. An expired reservation cannot be revitalized.

7.3.9.2 Data Types

The conceptual model of the Reserve operation is shown in the following UML diagram.

OGC 09-000

104 Co

Figure 27 — Data types of the Reserve operation

The details of the operation request and response are explained in the following
subclauses.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 105

7.3.9.3 Operation Request - Reserve

Sending an instance of the Reserve data type to the service performs an SPS Reserve
operation request.

The Reserve data type is derived from the abstract TaskingRequest data type (see clause
7.3.1.3) and therefore inherits all the properties contained in that data type. Reserve does
not restrict the content model of TaskingRequest.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ReserveRequest/dataType

REQ 81. The Reserve data type shall contain the properties defined for
TaskingRequest. In addition, it shall contain the properties
according to Table 51.

Table 51 — Property in the Reserve data type

Name Definition Data type and values Multiplicity and use
reservation

Expiration
point in time when the

reservation shall expire
DateTime
(see ISO 19103 and

OGC 07-036 Table
D.2)

value shall be a point in
time in the future

Zero or one (optional)

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ReserveRequest/timing

REQ 82. The Reserve data type is a TaskingRequest. If the client defines
a reservationExpiration time and this time has already passed
when the SPS receives the request, then the SPS shall reject the
request.

7.3.9.4 Operation Response - ReservationReport

The ReserveResponse data type represents the response to an SPS Reserve operation
request. It is derived from the TaskingResponse data type (see clause 7.3.1.4) and
therefore inherits all the properties contained in that data type. ReserveResponse neither
restricts the content model of TaskingResponse nor adds additional properties.

OGC 09-000

106 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ReserveResponse/dataType

REQ 83. The ReserveResponse data type shall contain the properties
defined for TaskingResponse.

A ReserveResponse contains either a ReservationReport or a StatusReport to indicate the
result of the requested operation. The concrete report type depends on the status of the
request. The only difference between both report types is the additional expirationTime
property of the ReservationReport.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ReserveResponse/ReportType

REQ 84. A ReservationReport shall be returned if the request gets
accepted. In all other cases, a StatusReport shall be returned.

As a Reserve request is a tasking request, the final result of that request might not be
directly available and would then be pending.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ReserveResponse/ReportProperties

REQ 85. The properties of the ReservationReport or StatusReport shall
be used as defined in the Table 52.

The transitions starting from the Pending state are not applicable for reporting in the
ReserveResponse, as the ReserveResponse provides only information about the first state
transition, i.e. from initial to accepted, pending, or rejected. Clients retrieve further state
transitions via notifications or GetStatus operation calls.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 107

Table 52 – StatusReport usage for different state transitions of a Reserve request
property

name/cardi
nality

Reserve Request State Transitions
(From To)

Initial
Pending

Initial
Accepted

Initial
Rejected

Pending

Accepted

Pending

Rejected

Pending
Rejected
(request
expired)

task/1 new identifier provided by service identifier previously provided by
service

estimatedTo
C/0..1

NA optional NA optional NA NA

event
(code)/0..1

NA TaskReser
ved

NA TaskReser
ved

NA TaskingReq
uestExpired

percentCom
pletion/0..1

NA 1

procedure/1 identifier of procedure for which Reserve request was made

requestStatu
s (code)/1

Pending Accepted Rejected Accepted Rejected Rejected

statusMessa
ge/0..*

service may provide additional information to client in human readable
form

taskingPara
meters/0..1

NA

taskStatus
(code)/0..1

NA Reserved NA Reserved NA NA

updateTime/
1

point in time when transition was made

alternative/0
..*

may be provided by service

StatusReport
encoded as
Reservation

Report

no yes no yes no no

Applicable
in Reserve
Response

yes yes yes no no no

NA = not applicable

Notes
1 only applicable to tasks that are being or have been executed

7.3.9.5 ReservationReport

The ReservationReport type is derived from the StatusReport type (see clause 7.3.1.5)
and therefore inherits all the properties contained in that type. ReservationReport does
not restrict the content model of StatusReport.

OGC 09-000

108 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ReserveResponse/ReservationReport/dataType

REQ 86. The ReservationReport type shall contain the properties defined
for StatusReport. In addition, it shall contain the property
according to Table 53.

Table 53 — Property in the ReservationReport type

Name Definition Data type and values Multiplicity and use
reservation

Expiration
point in time when the

(task) reservation will
expire

DateTime
(see ISO 19103 and

OGC 07-036 Table
D.2)

value shall be a point in
time in the future

One (mandatory)

7.3.9.6 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ReserveResponse/exceptions

REQ 87. When an SPS server encounters an error while performing a
Reserve operation, it shall return an exception message as
specified in clause 7.2.

7.3.9.7 Examples

Clause 9.6 provides example XML instances for the Reserve operation request and
response.

7.3.10 Confirm Operation

7.3.10.1 Introduction

The Confirm operation allows SPS clients to confirm a reserved task. If accepted, the task
transits from state Reserved to InExecution (see clause 10).

7.3.10.2 Data Types

The conceptual model of the Confirm operation is shown in the following UML diagram.

OGC 09-000

Co

Figure 28 — Data types of the Confirm operation

The details of the operation request and response are explained in the following
subclauses.

7.3.10.3 Operation Request - Confirm

Sending an instance of the Confirm data type to the service performs an SPS Confirm
operation request.

The Confirm data type is derived from the abstract SWES ExtensibleRequest data type
specified in clause 9 of [OGC 09-001] and therefore inherits all the properties contained
in that data type. Confirm does not restrict the content model of ExtensibleRequest.

pyright © 2011 Open Geospatial Consortium 109

OGC 09-000

110 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ConfirmRequest/dataType

REQ 88. The Confirm data type shall contain the properties defined for
SWES ExtensibleRequest. In addition, it shall contain the
property according to Table 54.

Table 54 — Property in the Confirm data type

Name Definition Data type and values Multiplicity and use
task Pointer to the reserved

task that is requested to
be confirmed.

Task id, see clause
7.3.1.6

One (mandatory)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.10.4 Operation Response - ConfirmResponse

The ConfirmResponse data type represents the response to an SPS Confirm operation
request.

The ConfirmResponse data type is derived from the SWES ExtensibleResponse data type
specified in clause 9 of [OGC 09-001] and therefore inherits all the properties contained
in that data type. ConfirmResponse does not restrict the content model of
ExtensibleResponse.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ConfirmResponse/dataType

REQ 89. The ConfirmResponse data type shall contain the properties
defined for SWES ExtensibleResponse. In addition, it shall
contain the property according to Table 55.

Table 55 — Property in the ConfirmResponse data type

Name Definition Data type and values Multiplicity and use
result report with the outcome

of the confirmation
request

StatusReport, see
7.3.1.5

Properties of
StatusReport shall be
used as defined in
Table 56

One (mandatory)

Table 56 illustrate the usage of the StatusReport properties in Confirm responses.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 111

Table 56 – StatusReport property usage in Confirm operation response
property name/cardinality Operation outcome

Confirmation was accepted Confirmation was
rejected 7

task/1 task identifier used in request
estimatedToC/0..1 NA 1
event (code)/0..1 NA 2

percentCompletion/0..1 NA 3
procedure/1 identifier of procedure associated with reserved task

requestStatus (code)/1 Accepted Rejected
statusMessage/0..* usage optional service should indicate

why the confirmation
was rejected

taskingParameters/0..1 NA 4
taskStatus (code)/0..1 NA 5

updateTime/1 point in time when confirmation
was accepted

point in time when
confirmation was

rejected
alternative/0..* NA 6

NA = not applicable

NOTES:
1 only applicable to scheduled tasks that have not been finalized yet
2,4,5 only applicable to tasking requests and tasks
3 only applicable to tasks that are being or have been executed
6 only applicable to tasking requests
7 in this case the reserved task fails

7.3.10.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/ConfirmResponse/exceptions

REQ 90. When an SPS server encounters an error while performing a
Confirm operation, it shall return an exception message as
specified in clause 7.2.

7.3.10.6 Examples

Clause 9.6 provides example XML instances for the Confirm operation request and
response.

OGC 09-000

112 Copyright © 2011 Open Geospatial Consortium

7.3.11 GetFeasibility Operation

7.3.11.1 Introduction

The GetFeasibility operation allows SPS clients to obtain information about the
feasibility of a tasking request. See section 6.3.4 for further details on GetFeasibility
checks. The client encodes the tasking parameters according to the parameter description
given in the DescribeTasking response.

An SPS may be capable of computing alternatives for requested parameter settings in a
tasking request. These alternatives may slightly modify the tasking parameters contained
in the request (e.g. to change the time frame of an intended task by a few minutes) or
suggest completely new sets of tasking parameters that lead to similar results. Once the
feasibility study is completed, the alternatives would be provided as part of the
GetFeasibility response. Each alternative should represent a feasible task at the time
when the alternative was computed. Clients should be aware that the feasibility might
change at any time afterwards.

7.3.11.2 Data Types

The conceptual model of the GetFeasibility operation is shown in the following UML
diagram.

OGC 09-000

Co

Figure 29 — Data types of the GetFeasibility operation

The details of the operation request and response are explained in the following
subclauses.

7.3.11.3 Operation Request - GetFeasibility

Sending an instance of the GetFeasibility data type to the service performs an SPS
GetFeasibility operation request.

pyright © 2011 Open Geospatial Consortium 113

OGC 09-000

114 Copyright © 2011 Open Geospatial Consortium

The GetFeasibility data type is derived from the TaskingRequest data type (see clause
7.3.1.3) and therefore inherits all the properties contained in that data type. GetFeasibility
neither restricts the content model of TaskingRequest nor adds additional properties.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetFeasibilityRequest/dataType

REQ 91. The GetFeasibility data type shall contain the properties defined
for TaskingRequest.

7.3.11.4 Operation Response - GetFeasibilityResponse

The GetFeasibilityResponse data type represents the response to an SPS GetFeasibility
operation request.

The GetFeasibilityResponse data type is derived from the TaskingResponse data type (see
clause 7.3.1.4) and therefore inherits all the properties contained in that data type.
GetFeasibilityResponse neither restricts the content model of TaskingResponse nor adds
additional properties.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetFeasibilityResponse/dataType

REQ 92. The GetFeasibilityResponse data type shall contain the
properties defined for TaskingResponse.

A GetFeasibilityResponse contains a StatusReport (see clause 7.3.1.5) to indicate the
result of the requested operation. As a GetFeasibility request is a tasking request, the final
result of that request might not be directly available and would then be pending. The
properties of a StatusReport and the possible transitions (see clause 6.3.6) shall be used as
defined in the following table.

All transitions starting from the Pending state are not applicable for reporting in the
response, as the response provides only information about the first state transition, i.e.
from initial to accepted, pending, or rejected. Clients retrieve further state transitions via
notifications or GetStatus operation calls.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 115

Table 57 – StatusReport usage for different state transitions of a GetFeasibility
request

property
name/cardin

ality

GetFeasibility Request State Transitions
(From To)

Initial
Pending

Initial
Accepted

Initial
Rejected

Pending
Accepted

Pending
Rejected

Pending

Rejected
(request
expired)

task/1 new identifier provided by service identifier previously provided by
service

estimatedToC
/0..1

NA

event
(code)/0..1

NA TaskingRe
questExpir

ed
percentCompl

etion/0..1
NA 1

procedure/1 identifier of procedure for which GetFeasibility request was made

requestStatus
(code)/1

Pending Accepted Rejected Accepted Rejected Rejected

statusMessage
/0..*

service may provide additional information to client in human readable form

taskingParam
eters/0..1

NA 2

taskStatus
(code)/0..1

NA 3

updateTime/1 point in time when transition was made

alternative/0..
*

may be provided by service

StatusReport
encoded as

ReservationR
eport

no

Applicable in
GetFeasibility

Response

yes yes yes no no no

NA = not applicable, means that property is not provided

Notes:
1 only applicable to tasks that are being or have been executed
2 not applicable in direct response to tasking request
3 GetFeasibility does not lead to a scheduled task

7.3.11.5 Exceptions

OGC 09-000

116 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/GetFeasibilityResponse/exceptions

REQ 93. When an SPS server encounters an error while performing a
GetFeasibility operation, it shall return an exception message as
specified in clause 7.2.

7.3.11.6 Examples

Clause 9.6 provides example XML instances for the GetFeasibility operation request and
response.

7.3.12 Update Operation

7.3.12.1 Introduction

The Update operation allows SPS clients to update a successfully submitted/reserved task
that has not been finalized yet.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Update/Rules

REQ 94. The client encodes the tasking parameters according to the
parameter description of the DescribeTasking response. This
description indicates which parameters can be updated (see
clause 7.4.3). The following rules apply:

1. The default value of the updatable property on a SWE
Common AbstractDataComponent used for describing
the syntax and semantics of tasking parameters at SPS
shall have the default value true. Thus, whenever a client
encounters a tasking parameter component where the
updatable property is omitted, that component is
considered to be updatable. If the parameter is not set,
the parameter is considered as non-updateable.

2. The structure of the tasking parameters in an Update
request reflect the description in the DescribeTasking
response with non-updatable parameters being removed.
Thus fields/items of DataRecords/DataChoices in the
parameter description shall be removed entirely if the
contained data component is not updatable.

3. Any SPS server shall reject Update requests if clients try
to update non-updateable parameters. The server shall

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 117

identify the critical paramter. Update requests containing
a single non-updateable parameter shall be rejected
completely.

4. If an SPS flags a DataRecord/DataChoice that is (part
of) of a tasking parameter description as updatable then
at least one of the fields/items in that
DataRecord/DataChoice shall be updatable as well.

5. An SPS shall not set the updatable flag on a data
component that is contained in the elementType property
of a DataArray/Matrix. To indicate updateability of a
DataArray/Matrix, the updatable property of the
DataArray/Matrix itself shall be used. A service may,
however, flag fields of a DataRecord that represent the
elementType of a DataArray/Matrix as updatable.

Note: as a result of the above rules, updating tasks of a given procedure might not be allowed. Also, each
updatable DataRecord/DataChoice has at least one field/item that can be used in an update.

Performing an update of a task is a distinct action. As such, the update request is treated
separate from the task itself.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/UpdateRequest/identifier

REQ 95. Any SPS shall assign a unique identifier to an UpdateRequest.
This is especially needed for a pending UpdateRequest that
enters the Pending state.

Clients use this identifier to query the status of the update
request. If the request gets accepted, then the update was
successful and the service shall keep track of this event in the
status log of the updated task (as it triggers a transition, see
clause 10). Another client querying the status of the task itself
will then know that the task has just been updated. If the update
was rejected, the task is unchanged (no transition was made).

7.3.12.2 Data Types

The conceptual model of the Update operation is shown in the following UML diagram.

OGC 09-000

118 Co

Figure 30 — Data types of the Update operation

The details of the operation request and response are explained in the following
subclauses.

7.3.12.3 Operation Request - Update

Sending an instance of the Update data type to the service performs an SPS Update
operation request.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 119

The Update data type is derived from the TaskingRequest data type (see clause 7.3.1.3)
and therefore inherits all the properties contained in that data type. Update does not
restrict the content model of TaskingRequest.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/UpdateRequest/dataType

REQ 96. The Update data type shall contain the properties defined for
TaskingRequest. In addition, it shall contain the properties
according to Table 58.

Table 58 — Property in the Update data type

Name Definition Data type and values Multiplicity and use
targetTask Pointer to the

(scheduled) task to
update.

Task id, see clause 7.3.1.6
value shall be a pointer to a

task that is scheduled by
the service

One (mandatory)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.12.4 Operation Response - UpdateResponse

The UpdateResponse data type represents the response to an SPS Update operation
request.

The UpdateResponse data type is derived from the TaskingResponse data type (see clause
7.3.1.4) and therefore inherits all the properties contained in that data type.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/UpdateResponse/dataType

REQ 97. The UpdateResponse data type shall contain the properties
defined for TaskingResponse. In addition, it shall contain the
properties according to Table 59.

OGC 09-000

120 Copyright © 2011 Open Geospatial Consortium

Table 59 — Property in the UpdateResponse data type

Name Definition Data type and values Multiplicity and use
targetTask Pointer to the

(scheduled) task to
update.

Task id, see clause 7.3.1.6
value shall be a pointer to a

task that is scheduled by
the service

One (mandatory)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

An UpdateResponse contains a StatusReport (see clause 7.3.1.5) to indicate the result of
the requested operation. As an Update request is a tasking request, the final result of that
request might not be directly available and would then be pending.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/UpdateResponse/statusReportUsage

REQ 98. The properties of a StatusReport for the possible transitions of
an Update (tasking) request shall be used as defined in Table 60.

All transitions starting from the Pending state are not applicable for reporting in the
response, as the response provides only information about the first state transition, i.e.
from initial to accepted, pending, or rejected. Clients retrieve further state transitions via
notifications or GetStatus operation calls.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 121

Table 60 – StatusReport usage for different state transitions of an Update request
property

name/cardinali
ty

Update Request State Transitions
(From To)

 Initial
Pending

Initial
Accepted

Initial
Rejected

Pending

Accepted

Pending

Rejected

Pending
Rejected
(request
expired)

task/1 new identifier provided by service identifier previously provided by service

estimatedToC/0
..1

NA

event
(code)/0..1

NA TaskingRequestE
xpired

percentComplet
ion/0..1

NA

procedure/1 identifier of procedure that belongs to task for which Update request was made

requestStatus
(code)/1

Pending Accepted Rejected Accepted Rejected Rejected

statusMessage/
0..*

service may provide additional information to client in human readable form

taskingParamet
ers/0..1

NA

taskStatus
(code)/0..1

NA

updateTime/1 point in time when transition was made

alternative/0..* may be provided by service
StatusReport
encoded as

ReservationRep
ort

NA

Applicable in
Update

Response

yes yes yes no no no

NA = not applicable

OGC 09-000

122 Copyright © 2011 Open Geospatial Consortium

7.3.12.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/UpdateResponse/exceptions

REQ 99. When an SPS server encounters an error while performing a
Update operation, it shall return an exception message as
specified in clause 7.2.

7.3.12.6 Examples

Clause 9.6 provides example XML instances for the Update operation request and
response.

7.3.13 Cancel Operation

7.3.13.1 Introduction

The Cancel operation allows SPS clients to cancel a scheduled task (see clause 6.3.6).
The service may reject the cancellation. The response should indicate why the
cancellation did not succeed. If the cancellation was rejected, the task remains in its
current state.

7.3.13.2 Data Types

The conceptual model of the Cancel operation is shown in the following UML diagram.

OGC 09-000

Co

Figure 31 — Data types of the Cancel operation

The details of the operation request and response are explained in the following
subclauses.

7.3.13.3 Operation Request - Cancel

Sending an instance of the Cancel data type to the service performs an SPS Cancel
operation request.

The Cancel data type is derived from the SWES ExtensibleRequest data type specified in
clause 9 of [OGC 09-001] and therefore inherits all the properties contained in that data
type. Cancel does not restrict the content model of ExtensibleRequest.

pyright © 2011 Open Geospatial Consortium 123

OGC 09-000

124 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/CancelRequest/dataType

REQ 100. The Cancel data type shall contain the properties defined for
SWES ExtensibleRequest. In addition, it shall contain the
property according to Table 61.

Table 61 — Property in the Cancel data type

Name Definition Data type and values Multiplicity and use
task Pointer to the

(scheduled) task to
cancel.

Task id, see clause 7.3.1.6
value shall be a pointer to a task

that is scheduled by the service

One (mandatory)

id) Note: the primary use of this property is to provide a pointer/identifier – see OGC 09-001 clause
16.3.1 for further details.

7.3.13.4 Operation Response - CancelResponse

The CancelResponse data type represents the response to an SPS Cancel operation
request.

The CancelResponse data type is derived from the SWES ExtensibleResponse data type
specified in clause 9 of [OGC 09-001] and therefore inherits all the properties contained
in that data type. CancelResponse does not restrict the content model of
ExtensibleResponse.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/CancelResponse/dataType

REQ 101. The CancelResponse data type shall contain the properties
defined for SWES ExtensibleResponse. In addition, it shall
contain the property according to Table 62.

Table 62 — Properties in the CancelResponse data type

Name Definition Data type and values Multiplicity and use
result report with the outcome of

the cancellation request
StatusReport, see

7.3.1.5
Properties of
StatusReport shall be
used as defined in
Table 63

One (mandatory)

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 125

Table 63 illustrates the usage of the StatusReport properties in a CancelResponse.

Table 63 – StatusReport property usage in Cancel operation response
property

name/cardinality
Operation outcome

Cancellation was accepted Cancellation was rejected

task/1 task identifier used in request

estimatedToC/0..1 NA 1

event (code)/0..1 NA 2

percentCompletion/0..1 NA 3

procedure/1 identifier of procedure associated with scheduled task

requestStatus (code)/1 Accepted Rejected

statusMessage/0..* usage optional service should indicate why
the cancellation was

rejected
taskingParameters/0..1 NA 4

taskStatus (code)/0..1 NA 5

updateTime/1 point in time when cancellation was
accepted

point in time when
cancellation was rejected

alternative/0..* NA 6

NA = not applicable, means the property is not used in the StatusReport

Notes:
1 only applicable to scheduled tasks that have not been finalized yet
2,4,5 only applicable to tasking requests and tasks
3 only applicable to tasks that are being or have been executed
6 only applicable to tasking requests

7.3.13.5 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/CancelResponse/exceptions

REQ 102. When an SPS server encounters an error while performing a
Cancel operation, it shall return an exception message as
specified in clause 7.2.

OGC 09-000

126 Copyright © 2011 Open Geospatial Consortium

7.3.13.6 Examples

Clause 9.6 provides example XML instances for the Cancel operation request and
response.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 127

7.4 SPS tasking parameters representation

SPS servers describe optional and mandatory tasking parameters. Clients use the
definition to provide corresponding tasking parameter values. To ensure common
understanding between client and server, a common exchange protocol is used to express
both descriptions and tasking parameter values.

SPS uses the types defined in the SweCommon Data Model (OGC 08-094) to define
tasking parameters. The tasking parameters of a given procedure are defined in the
DescribeTaskingResponse. Clients have to use one of the encodings provided in the
contents section of the capabilities (e.g. TextEncoding, XMLEncoding, etc.) to encode the
tasking parameters in the various tasking requests.

Listing 1 – example of an SPS tasking parameter description
<swe:DataRecord …>
 <swe:field name="taskTimeFrame">
 <swe:TimeRange definition="http://www.opengis.net/def/property/OGC-
SPS/0/TaskTimeFrame" referenceFrame="http://www.opengis.net/def/trs/BIPM/0/UTC"
optional="false" updatable="false">
 <swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:TimeRange>
 </swe:field>
 <swe:field name="positioningChoice">
 <swe:DataChoice optional="true">
 <swe:item name="pointToLookAt">
 <swe:Vector definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/PointToLookAt" referenceFrame="http://www.opengis.net/def/crs/EPSG/0/4979">
 <swe:coordinate name="lat">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Latitude" axisID="Lat">
 <swe:uom xlink:href="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="long">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Longitude" axisID="Long">
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="h">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Vertical" axisID="h">
 <swe:uom code="m"/>
 <swe:value>0</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:item>
 <swe:item name="relativePositioning">
 <swe:DataRecord definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativePan">
 <swe:field name="relativeHorizontalPan">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativeHorizontalPan" optional="true">
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-180 180</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 <swe:field name="relativeVerticalPan">

OGC 09-000

128 Copyright © 2011 Open Geospatial Consortium

 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativeVerticalPan" optional="true">
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-90 90</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:field>
 <swe:field name="focalLength">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/FocalLength" optional="true">
 <swe:uom code="mm"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>3.5 10</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

Listing 2 – example of tasking parameters corresponding to description provided by client in given
encoding
<sps:ParameterData …>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
<sps:values>2010-08-20T12:37:00+02:00,2010-08-20T14:30:00+02:00,Y,pointToLookAt,51.902112
,8.192728,0,Y,3.5</sps:values>
</sps:ParameterData>

7.4.1 Optional Parameters

As defined in clause 7.3.4 (DescribeTasking), the SPS provides any number of derivates
from AbstractDataComponent that have to be used by clients in order to task the service.
All AbstractDataComponents have an optional attribute.

Following OGC 08-094, only components that are listed inside the fields of a SWE
Common DataRecord shall have the optional attribute with value true.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingParameters/optionalParameters

REQ 103. Components that are not contained in a DataRecord field shall
not use the optional attribute or, if they do use it, set its value to
false (which is the default value for this attribute).

Clients can omit values for components that are marked as optional in a tasking request.

Items of a SWE Common DataChoice cannot be flagged as being optional. Thus, either
the whole choice is optional (in that case it is a field in a DataRecord) or mandatory.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 129

Listing 3 – example for optional and required tasking parameters
<swe:DataRecord …>
 <!-- Mandatory Parameter-->
 <swe:field name="taskTimeFrame">
 <swe:TimeRange optional="false" …>
 <!-- … -->
 </swe:TimeRange>
 </swe:field>
 <!-- Optional Parameter-->
 <swe:field name="p > ositioningChoice"
 <swe:DataChoice optional="true" …>
 <swe:item name="pointToLookAt">
 <swe:Vector …>
 <!-- … -->
 </swe:Vector>
 </swe:item>
 <swe:item name="relativePositioning">
 <swe:DataRecord …>
 <!-- Optional Parameter-->
 <swe:field name= alPan"> "relativeHorizont
 <swe:Quantity optional="true" …>
 <!-- … -->
 </swe:Quantity>
 </swe:field>
 <!-- Optional Parameter-->
 <swe:field name= Pan"> "relativeVertical
 <swe:Quantity optional="true" …>
 <!-- …-->
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:field>
 <!-- Optional Parameter-->
 <swe:field name="focalLength">
 <swe:Quantity optional="true" …>
 <!-- …-->
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

7.4.2 Default Values

All data components defined in [OGC 08-094] can be either used as data descriptors or
data containers. Data containers set the attribute values, data descriptors don’t. SPS uses
both descriptors and containers to describe tasking parameters! Given values indicate
default values. The SPS can set default values for each tasking parameter. An SPS may
but is not required to provide default values. The client can either accept this default
value and use it as-is or overwrite it in a tasking request.

OGC 09-000

130 Copyright © 2011 Open Geospatial Consortium

Listing 4 – example of a tasking parameter description without default values
<swe:DataRecord …>
 <!-- -->
 <swe:field name="positioningChoice">
 <swe:DataChoice …>
 <swe:item name="pointToLookAt">
 <swe:Vector …>
 <!-- -->
 <swe:coordinate name="h">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Vertical" axisID="h">
 <swe:uom code="m"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:item>
 <!-- -->
 </swe:DataChoice>
 </swe:field>
 <!-- -->
</swe:DataRecord>

Listing 5 – example of a tasking parameter description including default values
<swe:DataRecord …>
 <!-- -->
 <swe:field name="positioningChoice">
 <swe:DataChoice …>
 <swe:item name="pointToLookAt">
 <swe:Vector …>
 <!-- -->
 <swe:coordinate name="h">
 <swe:Quantity …>
 <swe:uom code="m"/>
 <swe:value>0</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:item>
 <!-- -->
 </swe:DataChoice>
 </swe:field>
 <!-- -->
</swe:DataRecord>

If an SPS uses a DataArray or Matrix in its tasking parameters description then it may
provide default values that are encoded according to a description that the service also
provides in that array/matrix. As clients may safely ignore given default values, they can
also ignore unknown/unsupported encodings that they might encounter in a
DataArray/Matrix provided by an SPS.

7.4.3 Updatable parameters

AbstractDataComponents as defined in OGC 08-094 clause 7.2 provide an optional
updatable attribute. This attribute is set to true if the corresponding tasking parameter can
be included in an Update request. If the attribute is not set or set to false, the tasking
parameter cannot be updated and thus no value for it is included in an Update request.

Clients can simply strip any component from the tasking parameter description retrieved
via DescribeTasking that are not updatable. The resulting description defines the structure

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 131

of the parameters to be included in an update request. If the data component that
represents the whole tasking parameter descriptor for tasking a given procedure is not
updatable then the Update operation is not realized for that procedure.

Listing 6 – example of tasking parameter description with updatable and non-updatable parameters
<!-- Update operation is implemented for procedure -->
<swe:DataRecord …>
 <!-- Parameter not updatable -->
 <swe:field name="taskTimeFrame">
 <swe:TimeRange … updatable="false">
 <!-- -->
 </swe:TimeRange>
 </swe:field>
 <!-- Parameter is updatable -->
 <swe:field name="positioningChoice">
 <swe:DataChoice …>
 <!-- Choice item is available for Update -->
 <swe:item name="pointToLookAt">
 <swe:Vector …>
 <!-- -->
 </swe:Vector>
 </swe:item>
 <!-- Choice item is available for Update -->
 <swe:item name="relativePositioning">
 <swe:DataRecord …>
 <!-- Record field is available for Update -->
 <swe:field name="relativeHorizontalPan">
 <swe:Quantity …>
 <!-- -->
 </swe:Quantity>
 </swe:field>
 <!-- Record field is available for Update -->
 <swe:field name="relativeVerticalPan">
 <swe:Quantity …>
 <!-- -->
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:field>
 <!-- Parameter is updatable -->
 <swe:field name="focalLength">
 <swe:Quantity …>
 <!-- -->
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

Removing all components that are not updatable would result in the following parameter
description. A client would use this description in an Update request.

OGC 09-000

132 Copyright © 2011 Open Geospatial Consortium

Listing 7 – example of tasking parameter description for update request where all non-updatable
parameters have been removed
<swe:DataRecord …>
 <swe:field name="positioningChoice">
 <swe:DataChoice …>
 <swe:item name="pointToLookAt">
 <swe:Vector …>
 <!-- -->
 </swe:Vector>
 </swe:item>
 <swe:item name="relativePositioning">
 <swe:DataRecord …>
 <swe:field name="relativeHorizontalPan">
 <swe:Quantity …>
 <!-- -->
 </swe:Quantity>
 </swe:field>
 <swe:field name="relativeVerticalPan">
 <swe:Quantity …>
 <!-- -->
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:field>
 <swe:field name="focalLength">
 <swe:Quantity …>
 <!-- -->
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

7.4.4 Constraints/restrictions

Most of the simple components defined in SWE Common allow provision of constraint
attributes. Those can be set by SPS to constrain allowed values for tasking parameters.

Listing 8 – example of constraints/restrictions on tasking parameter values
<swe:DataRecord …>
 <swe:field name="taskTimeFrame">
 <!-- -->
 </swe:field>
 <swe:field name="positioningChoice">
 <swe:DataChoice optional="true">
 <swe:item name="pointToLookAt">
 <!-- -->
 </swe:item>
 <swe:item name="relativePositioning">
 <swe:DataRecord …>
 <swe:field name="relativeHorizontalPan">
 <swe:Quantity …>
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-180 180</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 <swe:field name="relativeVerticalPan">
 <swe:Quantity …>
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-90 90</swe:interval>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 133

 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:field>
 <swe:field name="focalLength">
 <swe:Quantity …>
 <swe:uom code="mm"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>3.5 10</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

7.4.5 Definition (observedProperty)/Semantics

Each tasking parameter sets the value(s) for a single property. The property is defined
using the definition attribute of the data component. Resolving the URN can retrieve the
semantics.

7.4.6 Uoms

The unit of measure (UOM) is defined in data component using the mechanisms
described in [OGC08-094] clause 6.2.3.

7.4.7 Encoding (XML, text, binary)

SPS defines the supported encodings as described in clause 7.3.3.3. It is recommended to
use either TextEncoding or XMLEncoding (defined in OGC08-094 clause 7.6), though the
advanced encoding package, which supports raw and base 64 binary blocks (defined in
OGC08-094 clause 7.7), can be supported as well.

8 Publish/Subscribe

8.1 Introduction

The publish/subscribe functionality is an optional feature of SPS.

The SPS model defines events, which can be published to interested consumers via a
publish/subscribe interface (see clause 10, more specifically see Figure 32 and Figure
34). The events represent state changes of a task or tasking request. However, further
events can also be recognized by an SPS, for example the events defined in [OGC 09-
001].

NOTE: As discussed in chapter 17.2 of [OGC 09-001], the realization of the publish/subscribe functionality
defined in this chapter shall be documented in a specific binding for this standard (e.g., the realization in
the SOAP binding is documented in clause 9).

OGC 09-000

134 Copyright © 2011 Open Geospatial Consortium

A publish/subscribe interface may support various subscription models as explained in
[OGC 09-001] and [OGC 09-032]. If supported, content based filtering using XPath 1.0
and FES 1.1 [OGC 04-095] shall be implemented as specified in clause 17.2.3 of [OGC
09-001].

8.2 SPS Events

The publishable events recognized by this standard are defined in Table 64.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Events/eventTypes

REQ 104. Any SPS implementing publish/subscribe functionality shall
implement the events according to Table 64.

An SPS may also recognize and publish the events defined by the SWE Service Model
(see OGC 09-001 clause 17.2) or any other event.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Events/channelBasedSubscription

REQ 105. If an SPS supports channel based subscriptions (see clause 8.3),
it shall state the topics and thus supported events in the topic set
contained in its notification metadata (see clause 7.3.2.4).

Table 64 — SPS Events and their encoding

Event name a Event definition State transition
from to

Encoding
of the
event

Use at SPS
that
implements
Publish/Sub
scribe

TaskingReque
stAccepted

Tasking request
was accepted.

Initial | Pending
Accepted

see Table
65

mandatory

TaskingReque
stRejected

Tasking request
was rejected.

Initial | Pending
Rejected

see Table
65

optional

TaskingReque
stPending

Tasking request is
pending.

Initial Pending see Table
65

optional

TaskingReque see Table 14 Pending Rejected
(TaskingRequestExpi

see Table mandatory

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 135

stExpired red) 65

DataPublished InExecution
InExecution
(DataPublished)

see Table
66

mandatory

ReservationE
xpired

Reserved Final see Table
66

conditional

implement
if Reserve

operation is
realized

TaskCancelle
d

Scheduled (Reserved
or InExecution)
Final
(TaskCancelled)

see Table
66

conditional

implement
if Cancel

operation is
realized

TaskComplete
d

InExecution Final
(TaskCompleted)

see Table
66

mandatory

TaskConfirme
d

Reserved
InExecution

see Table
66

conditional

implement
if Confirm
operation is

realized

TaskUpdated InExecution
InExecution
(TaskUpdated) |
Reserved
Reserved
(TaskUpdated)

see Table
66

conditional

implement
if Update

operation is
realized

TaskFailed Scheduled (Reserved
or InExecution)
Final (TaskFailed)

see Table
66

mandatory

a Although some values listed in the column appear to contain spaces, they shall not contain spaces.

OGC 09-000

136 Copyright © 2011 Open Geospatial Consortium

Table 65 – StatusReport encoding for notification of tasking request state transition
 Transition from to StatusReport encoding and property usage for

notification of state transition for

 GetFeasibility
request

Reserve
request

Submit
request

Update
request

St
at

e
T

ra
ns

iti
on

s

Initial Pending as defined for
according state

transition in
Table 57

as defined
for

according
state

transition in
Table 52

as
defined

for
accordin
g state

transitio
n in

Table 31

as defined
for

according
state

transition
in Table

60

Initial | Pending Rejected

Pending Rejected
(TaskingRequestExpired)

Initial | Pending
Accepted

NA = not applicable

Table 66 – StatusReport encoding for notification of scheduled task state transition

 Transition from to StatusReport
encoding and

property usage for
notification of
state transition

St
at

e
T

ra
ns

iti
on

s

Reserved Reserved (TaskUpdated) as defined for
according state

transition in Table
36 and Table 37

but without
provision of

taskingParameters

InExecution InExecution (TaskUpdated)

Reserved InExecution (TaskConfirmed)

Reserved Final (ReservationExpired)

InExecution InExecution (DataPublished)
InExecution Final (TaskCompleted)

Scheduled (Reserved or InExecution) Final (TaskFailed)

Scheduled (Reserved or InExecution) Final (TaskCancelled)

NA = not applicable

Clause 9.6 provides example XML instances for notificatios of some of the SPS events.

8.3 Channel based filtering/SPS notification topics

When using channel based filtering, it is imperative to define which channels can be used
and which notifications are sent on each channel. The definitions of events recognized by
this standard are listed in Table 64. Each event is given by its name and definition.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 137

The OASIS WS-Topics standard defines the TopicNamespace type as a mean to group
and describe channels/topics that belong to a specific (target) namespace. The topic
namespace of this standard is defined through Listing 9 and Table 67.

Listing 9 – SPS Topic Namespace

<wstop:TopicNamespace xmlns:wstop="http://docs.oasis-
open.org/wsn/t-1" xmlns:sps="http://www.opengis.net/sps/2.0"
name="SPS-Topic-Namespace"
targetNamespace="http://www.opengis.net/sps/2.0" final="true">
 <wstop:Topic name="TaskEvent">
 <wstop:Topic name="TaskFailure"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskCancellation"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskCompletion"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskConfirmation"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskUpdate"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="DataPublication"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskReservation"
messageTypes="sps:ReservationReport"/>
 <wstop:Topic name="TaskSubmission"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name=”ReservationExpiration”
messageTypes=”sps:ReservationReport”/>
 </wstop:Topic>
 <wstop:Topic name=”TaskingRequestEvent”>
 <wstop:Topic name=”TaskingRequestExpiration”
messageTypes=”sps:StatusReport”/>
 <wstop:Topic name=”TaskingRequestRejection”
messageTypes=”sps:StatusReport”/>
 <wstop:Topic name=”TaskingRequestAcceptance”
messageTypes=”sps:StatusReport”/>
 <wstop:Topic name=”TaskingRequestPending”
messageTypes=”sps:StatusReport”/>
 </wstop:Topic>
</wstop:TopicNamespace>

The following table defines which events are published on which topics. The events and
their encoding are defined in Table 64.

OGC 09-000

138 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Events/topics

REQ 106. An SPS that supports channel based filtering/notification shall
publish events on topics according to Table 67. Such a service
shall publish only those SPS events that belong to topics listed
in the topic set of the service (the topic set is part of the
notification metadata contained in the Capabilities of the
service, see clause 7.3.2.4). Events from a different topic
namespace may be published by the service.

Note: this is to ensure that an SPS instance is publishing SPS events according to what the service
advertised via its topic set.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Events/topics/conditions

REQ 107. Table 67 also defines which topics shall be implemented by an
SPS that supports channel based filtering/notification topics in
general and which shall be implemented under certain
conditions. The required topics shall be listed in the topic set of
the service.

Each SPS may implement additional topics defined in other standards (like [OGC 09-
001]).

http://www/
http://www/

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 139

Table 67 — Topics and the events posted on them
Topic name Parent topic

name
Name of event(s)
posted on topic

Use at SPS that realizes
channel based

filtering/notification topics

TaskEvent - no events are posted on this topic- it is only used for
grouping of topics in the SPS topic namespace

TaskSubmission TaskEvent TaskingRequestAccepted
(the StatusReport encoding

the event shall have an
event property with value

TaskSubmitted)

mandatory

DataPublication TaskEvent DataPublished
TaskCompletion TaskEvent TaskCompleted

TaskFailure TaskEvent TaskFailed
TaskReservation TaskEvent TaskingRequestAccepted

(the ReservationReport
encoding the event shall

have an event property with
value TaskReserved)

conditional
implement if

Reserve&Confirm
operations are realized

ReservationExpir
ation

TaskEvent ReservationExpired

TaskConfirmatio
n

TaskEvent TaskConfirmed

TaskUpdate TaskEvent TaskUpdated conditional
implement if Update
operation is realized

TaskCancellation TaskEvent TaskCancelled conditional
implement if Cancel
operation is realized

TaskingRequestE
vent

- no events are posted on this topic- it is only used for
grouping of topics in the SPS topic namespace

TaskingRequest
Acceptance

TaskingRequest
Event

TaskingRequestAccepted optional 1

TaskingRequestR
ejection

TaskingRequest
Event

TaskingRequestRejected optional 1

TaskingRequestE
xpiration

TaskingRequest
Event

TaskingRequestExpired mandatory

TaskingRequestP
ending

TaskingRequest
Event

TaskingRequestPending optional 1

Notes:
1 If topic is implemented then publication of according event is required.

OGC 09-000

140 Copyright © 2011 Open Geospatial Consortium

Clause 9.6 describes a tasking scenario with example XML instances, one of which is an
SPS Capabilities document. It contains an exemplary topic set.

9 SOAP binding

9.1 Introduction

This section defines the realization of functionality defined in this standard for a service
using SOAP. This standard does not prescribe usage of either SOAP 1.1 or SOAP 1.2. It
also does not prescribe WSDL 1.1 or WSDL 2.0.

This standard does not define any specific policy statements to be included in a WSDL
document or in service requests and responses for defining certain established, available
or desired behavior. If the need for such policies arises in the future, necessary policy
statements can be included in the standard and/or its extensions.

9.2 Exceptions

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SOAP/exceptions

REQ 108. The operations defined in this standard use exception codes
defined by OWS Common [OGC 06-121r3] chapter 8, SWES
[OGC 09-001] chapter 15 as well as Table 6 in this standard.

The encoding of these exceptions for the operations used by this
standard (in a SOAP binding) shall be as defined in clause 19.2
of [OGC 09-001].

NOTE Each operation defined in this standard can have additional requirements with respect to the
implementation of the ows:Exception element to be used in the [Details] property (see [OGC 09-001]
clause 19.2.1) of faults generated while performing that operation. These requirements are stated in the
according clauses of each operation.

Clause 9.6 provides example XML instances for SOAP faults that inform about service
exceptions.

The following subclauses define the SOAP fault encoding of the SPS exceptions that are
introduced in chapter 7.2. The definitions are provided using abstract (SOAP) fault
properties as described in OGC 09-001 chapter 19.2.1. These abstract fault properties are
mapped to the properties of SOAP 1.1/1.2 faults as defined in sections 19.2.2 and 19.2.3
of OGC 09-001.

9.2.1 StatusInformationExpired exception

The meaning of this exception (code) is defined in clause 7.2 of this standard.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 141

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SOAP/Fault/StatusInformationExpired

REQ 109. The abstract fault properties for this exception shall be as
follows:

• [Code] The QName soap11:Service (SOAP 1.1) or
soap12:Receiver (SOAP 1.2)

• [Subcode] The QName sps:StatusInformationExpired

• [Reason] the string: “The status information for the
requested task / tasking request has already expired.”

• [Details] An ows:Exception element as defined in clause
8.2 of [OGC 06-121r3]

9.2.2 ModificationOfFinalizedTask exception

The meaning of this exception (code) is defined in clause 7.2 of this standard.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SOAP/Fault/ModificationOfFinalizedTask

REQ 110. The abstract fault properties for this exception shall be as
follows:

• [Code] The QName soap11:Client (SOAP 1.1) or
soap12:Sender (SOAP 1.2)

• [Subcode] The QName
sps:ModificationOfFinalizedTask

• [Reason] the string: “The requested task has already
been finalized.”

• [Details] An ows:Exception element as defined in clause
8.2 of [OGC 06-121r3]

9.3 Action URIs

For the SOAP binding, a standard needs to define action URIs for the following features:

OGC 09-000

142 Copyright © 2011 Open Geospatial Consortium

• as SOAPAction HTTP header field of a SOAP 1.1 request
• as action parameter in a SOAP 1.2 request (SOAP 1.2 feature:

“http://www.w3.org/2003/05/soap/features/action/”)
• as WS-Addressing [action] message addressing property

NOTE If and how a service instance makes use of one or more of these features depends on the chosen
SOAP and WSDL version as well as on the requirements of the service instance.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SOAP/ActionURIs

REQ 111. The action URIs shall be used for the various message facets
(requests and responses of operations) according to Table 68.

The action URI for SPS specific exceptions shall be as defined
in Table 69.

The actions URIs for the operations specified by the SWE Service Model
(DescribeSensor and UpdateSensorDescription) are defined in [OGC 09-001] clause
19.3.

The actions URIs for exceptions/fault message types that SPS operations use are also
defined in [OGC 09-001] clause 19.3.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 143

Table 68 — Action URIs for SPS message facets

Message
Facet a

Action URI a Applicable in feature (Y=yes, N=no)
SOAP 1.1
SOAPActio

n

SOAP
1.2

actio
n

WS-
Addressing

[action]

GetCapabilities
request

http://www.opengis.net/sps/2.0/
GetCapabilities

Y Y Y

GetCapabilities
response

http://www.opengis.net/sps/2.0/
GetCapabilitiesResponse

N N Y

DescribeTasking
request

http://www.opengis.net/sps/2.0/
DescribeTasking

Y Y Y

DescribeTasking
response

http://www.opengis.net/sps/2.0/
DescribeTaskingResponse

N N Y

Cancel request http://www.opengis.net/sps/2.0/
Cancel

Y Y Y

Cancel response http://www.opengis.net/sps/2.0/
CancelResponse

N N Y

Confirm request http://www.opengis.net/sps/2.0/
Confirm

Y Y Y

Confirm response http://www.opengis.net/sps/2.0/
ConfirmResponse

N N Y

DescribeResultA
ccess request

http://www.opengis.net/sps/2.0/
DescribeResultAccess

Y Y Y

DescribeResultA
ccess response

http://www.opengis.net/sps/2.0/
DescribeResultAccessResponse

N N Y

GetFeasibility
request

http://www.opengis.net/sps/2.0/
GetFeasibility

Y Y Y

GetFeasibility
response

http://www.opengis.net/sps/2.0/
GetFeasibilityResponse

N N Y

GetStatus request http://www.opengis.net/sps/2.0/
GetStatus

Y Y Y

GetStatus
response

http://www.opengis.net/sps/2.0/
GetStatusResponse

N N Y

GetTask request http://www.opengis.net/sps/2.0/
GetTask

Y Y Y

OGC 09-000

144 Copyright © 2011 Open Geospatial Consortium

Message
Facet a

Action URI a Applicable in feature (Y=yes, N=no)
SOAP 1.1
SOAPActio

n

SOAP
1.2

actio
n

WS-
Addressing

[action]

GetTask response http://www.opengis.net/sps/2.0/
GetTaskResponse

N N Y

Reserve request http://www.opengis.net/sps/2.0/
Reserve

Y Y Y

Reserve response http://www.opengis.net/sps/2.0/
ReserveResponse

N N Y

Submit request http://www.opengis.net/sps/2.0/
Submit

Y Y Y

Submit response http://www.opengis.net/sps/2.0/
SubmitResponse

N N Y

Update request http://www.opengis.net/sps/2.0/
Update

Y Y Y

Update response http://www.opengis.net/sps/2.0/
UpdateResponse

N N Y

a Although some values listed in the column appear to contain spaces, they shall not contain spaces.
NOTE The action URIs for the messages defined by the SWE Service Model and WS-Notification are not
listed here – they can be found in table 35 of [OGC 09-001] and the according paragraphs of WS-
Notification.

Clause 9.6 provides example XML instances for operation requests and responses, some
of which are wrapped by a SOAP envelope. These examples make use of the action URIs
defined in this section.

Table 69 — Action URI for SPS exceptions/fault types

Exception/Fault type WS-Addressing [action] message addressing
property value

Exception defined by SPS http://www.opengis.net/sps/2.0/Exception

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 145

9.4 Realization of Publish/Subscribe

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SOAP/PubSub

REQ 112. In the SOAP binding of this service, Publish/Subscribe
functionality shall be implemented as defined in clause 19.4 of
[OGC 09-001].

Clause 9.6 provides example XML instances for subscribing to and being notified of SPS
events.

9.5 Realization of Asynchronous Request/Response

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SOAP/WSAdressing

REQ 113. As defined in clause 19.4 of [OGC 09-001], an implementation
of this standard shall use WS-Addressing to enable
asynchronous request-response in the SOAP binding of the
service. The behavior for handling asynchronous tasking
responses shall be compliant to section 7.3.1.3.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/SOAP/AnonymousURI

REQ 114. If a client used the anonymous-URI (see 09-032 section 10.2) as
value of the wsa:ReplyTo property in the SOAP header of a
tasking request – and the service supports the anonymous-URI
feature – then the tasking response shall be sent in the
synchronous backchannel of the transport protocol (e.g. the
HTTP response message).

If a client used the none-URI (see 09-032 section 10.2) as value of the wsa:ReplyTo
property in the SOAP header of a tasking request then the service can discard any
operation response that would normally be generated, as the client is not receiving it
anyway. Only the response requirements of the underlying communication protocol need
to be satisfied, e.g. in case of HTTP an HTTP response message has to be returned.

9.6 SPS Examples Scenario

In the following, a scenario of tasking a pan, tilt, zoom camera is elaborated with XML
examples.

OGC 09-000

146 Copyright © 2011 Open Geospatial Consortium

Note: this scenario only covers parts of the overall functionality that can be realized via an SPS. It does not
cover all possible cases, situations and client/service interactions.

Note: some but not all of the following examples are wrapped in a SOAP envelope. Unwrapped examples
can easily be augmented with the missing information.

9.6.1 Retrieving the Capabilities Document

2010-08-20T11:00:00+02:00 – The client sends a GetCapabilities request to the service.

Listing 10 - GetCapabilities request example
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap12:Body>
 <sps:GetCapabilities/>
 </soap12:Body>
</soap12:Envelope>

2010-08-20T11:00:01+02:00 – The service sends a response with the Capabilities
document.

Listing 11 - SPS Capabilities document example
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:swes="http://www.opengis.net/swes/2.0" xmlns:wstop="http://docs.oasis-
open.org/wsn/t-1">
 <soap12:Body>
 <sps:Capabilities version="2.0.0">
 <ows:ServiceIdentification>
 <ows:Title xml:lang="en-us">SPS Specification Service</ows:Title>
 <ows:ServiceType>SPS</ows:ServiceType>
 <ows:ServiceTypeVersion>2.0.0</ows:ServiceTypeVersion>
 <ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub</ows:Profile>

<ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/Core</ows:Profile>

<ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController</ows:Profile>

<ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/SOAP</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/StateLogger</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding</ows:Profile>

<ows:Profile>http://www.opengis.net/spec/SWES/2.0/conf/BasicSWEServiceMetadata</ows:Profi
le>

<ows:Profile>http://www.opengis.net/spec/SWES/2.0/conf/SensorProvider</ows:Profile>

<ows:Profile>http://www.opengis.net/spec/SWES/2.0/conf/SensorHistoryProvider</ows:Profile
>
 <ows:Profile>http://www.opengis.net/spec/SWES/2.0/conf/XMLEncoding</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWES/2.0/conf/SOAPBinding</ows:Profile>

<ows:Profile>http://www.opengis.net/spec/SWES/2.0/conf/PublishSubscribe</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/core</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-
components</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/uml-record-
components</ows:Profile>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 147

 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/uml-choice-
components</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-
encodings</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-
components</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/xsd-record-
components</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/xsd-choice-
components</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-
encodings</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/general-encoding-
rules</ows:Profile>
 <ows:Profile>http://www.opengis.net/spec/SWE/2.0/conf/text-encoding-
rules</ows:Profile>
 </ows:ServiceIdentification>
 <ows:ServiceProvider>
 <ows:ProviderName>SWE SPS 2.0 SWG</ows:ProviderName>
 <ows:ProviderSite xlink:href="http://www.opengeospatial.org/swe/sps"/>
 <ows:ServiceContact>
 <ows:IndividualName>Johannes Echterhoff</ows:IndividualName>
 <ows:ContactInfo>
 <ows:Phone>
 <ows:Voice>0049...</ows:Voice>
 </ows:Phone>
 </ows:ContactInfo>
 </ows:ServiceContact>
 </ows:ServiceProvider>
 <ows:OperationsMetadata>
 <ows:Operation name="GetCapabilities">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="Sections">
 <ows:AllowedValues>
 <ows:Value>All</ows:Value>
 <ows:Value>ServiceIdentification</ows:Value>
 <ows:Value>ServiceProvider</ows:Value>
 <ows:Value>OperationsMetadata</ows:Value>
 <ows:Value>Contents</ows:Value>
 <ows:Value>Notifications</ows:Value>
 </ows:AllowedValues>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="DescribeTasking">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="Submit">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="DescribeResultAccess">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="GetFeasibility">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>

OGC 09-000

148 Copyright © 2011 Open Geospatial Consortium

 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="Update">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="GetStatus">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 <ows:Parameter name="since">
 <ows:AnyValue/>
 </ows:Parameter>
 </ows:Operation>
 <ows:Operation name="GetTask">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="Cancel">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="Reserve">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Operation name="Confirm">
 <ows:DCP>
 <ows:HTTP>
 <ows:Post xlink:href="http://www.ogc.org/SPS"/>
 </ows:HTTP>
 </ows:DCP>
 </ows:Operation>
 <ows:Constraint name="PostEncoding">
 <ows:AllowedValues>
 <ows:Value>SOAP</ows:Value>
 </ows:AllowedValues>
 </ows:Constraint>
 </ows:OperationsMetadata>
 <sps:notifications>
 <swes:NotificationProducerMetadata>
 <swes:producerEndpoint>
 <wsa:EndpointReference>
 <wsa:Address>http://www.ogc.org/SPS/Producer</wsa:Address>
 </wsa:EndpointReference>
 </swes:producerEndpoint>
 <swes:supportedDialects>
 <swes:FilterDialectMetadata>
 <swes:topicExpressionDialect>http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Simple</swes:topicExpressionDialect>
 <swes:topicExpressionDialect>http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Concrete</swes:topicExpressionDialect>
 <swes:topicExpressionDialect>http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Full</swes:topicExpressionDialect>
 <swes:topicExpressionDialect>http://www.w3.org/TR/1999/REC-xpath-
19991116</swes:topicExpressionDialect>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 149

 <swes:messageContentDialect>http://www.w3.org/TR/1999/REC-xpath-
19991116</swes:messageContentDialect>
 </swes:FilterDialectMetadata>
 </swes:supportedDialects>
 <swes:fixedTopicSet>false</swes:fixedTopicSet>
 <swes:servedTopics>
 <wstop:TopicSet>
 <sps:TaskEvent>
 <sps:TaskFailure wstop:topic="true"/>
 <sps:TaskCancellation wstop:topic="true"/>
 <sps:TaskCompletion wstop:topic="true"/>
 <sps:TaskConfirmation wstop:topic="true"/>
 <sps:TaskUpdate wstop:topic="true"/>
 <sps:DataPublication wstop:topic="true"/>
 <sps:TaskReservation wstop:topic="true"/>
 <sps:TaskSubmission wstop:topic="true"/>
 <sps:ReservationExpiration wstop:topic="true"/>
 </sps:TaskEvent>
 <sps:TaskingRequestEvent>
 <sps:TaskingRequestExpiration wstop:topic="true"/>
 </sps:TaskingRequestEvent>
 <swes:CapabilitiesChange>
 <swes:OfferingAddition wstop:topic="true"/>
 <swes:OfferingDeletion wstop:topic="true"/>
 </swes:CapabilitiesChange>
 </wstop:TopicSet>
 </swes:servedTopics>
 <swes:usedTopicNamespace targetNamespace="http://www.opengis.net/sps/2.0"
final="true">
 <wstop:Topic name="TaskEvent">
 <wstop:Topic name="TaskFailure" messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskCancellation" messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskCompletion" messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskConfirmation" messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskUpdate" messageTypes="sps:StatusReport"/>
 <wstop:Topic name="DataPublication" messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskReservation" messageTypes="sps:ReservationReport"/>
 <wstop:Topic name="TaskSubmission" messageTypes="sps:StatusReport"/>
 <wstop:Topic name="ReservationExpiration"
messageTypes="sps:ReservationReport"/>
 </wstop:Topic>
 <wstop:Topic name="TaskingRequestEvent">
 <wstop:Topic name="TaskingRequestExpiration"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskingRequestRejection"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskingRequestAcceptance"
messageTypes="sps:StatusReport"/>
 <wstop:Topic name="TaskingRequestPending" messageTypes="sps:StatusReport"/>
 </wstop:Topic>
 </swes:usedTopicNamespace>
 <swes:usedTopicNamespace targetNamespace="http://www.opengis.net/swes/2.0"
final="true">
 <wstop:Topic name="CapabilitiesChange" messageTypes="swes:SWESEvent">
 <wstop:Topic name="OfferingAddition" messageTypes="swes:OfferingChanged"/>
 <wstop:Topic name="OfferingDeletion" messageTypes="swes:OfferingChanged"/>
 </wstop:Topic>
 <wstop:Topic name="SensorInsertion" messageTypes="swes:SensorChanged"/>
 <wstop:Topic name="SensorDescriptionUpdate"
messageTypes="swes:SensorDescriptionUpdated"/>
 </swes:usedTopicNamespace>
 </swes:NotificationProducerMetadata>
 </sps:notifications>
 <sps:contents>
 <sps:SPSContents>

<swes:procedureDescriptionFormat>http://www.opengis.net/sensorML/1.0.1</swes:procedureDes
criptionFormat>
 <swes:observableProperty>http://www.opengis.net/def/propertyType/x-
radiance</swes:observableProperty>
 <swes:offering>
 <sps:SensorOffering>

OGC 09-000

150 Copyright © 2011 Open Geospatial Consortium

 <swes:identifier>http://www.ogc.org/sps/offering1</swes:identifier>
 <swes:procedure>http://www.ogc.org/procedure/camera/1</swes:procedure>
 <sps:observableArea>
 <sps:byPolygon>
 <gml:Polygon gml:id="gid01">
 <gml:exterior>
 <gml:LinearRing>
 <gml:pos
srsName="http://www.opengis.net/def/crs/EPSG/0/4326">51.9 8.186</gml:pos>
 <gml:pos
srsName="http://www.opengis.net/def/crs/EPSG/0/4326">51.9005 8.186</gml:pos>
 <gml:pos
srsName="http://www.opengis.net/def/crs/EPSG/0/4326">51.9005 8.199</gml:pos>
 <gml:pos
srsName="http://www.opengis.net/def/crs/EPSG/0/4326">51.9 8.199</gml:pos>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
 </sps:byPolygon>
 </sps:observableArea>
 </sps:SensorOffering>
 </swes:offering>
 <sps:minStatusTime>PT12H</sps:minStatusTime>

<sps:supportedEncoding>http://www.opengis.net/swe/2.0/TextEncoding</sps:supportedEncoding
>
 </sps:SPSContents>
 </sps:contents>
 </sps:Capabilities>
 </soap12:Body>
</soap12:Envelope>

9.6.2 Getting Result Access Information for a Procedure

2010-08-20T11:06:00+02:00 - The client sends a DescribeResultAccess request to the
service to learn which data storages the SPS uses to make data gathered by procedure
http://www.ogc.org/procedure/camera/1 accessible.

Listing 12 - DescribeResultAccess request example targetting a procedure
<sps:DescribeResultAccess service="SPS" version="2.0.0"
xmlns:sps="http://www.opengis.net/sps/2.0" xmlns:swe="http://www.opengis.net/swe/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:target>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 </sps:target>
</sps:DescribeResultAccess>

2010-08-20T11:06:01+02:00 – The service sends a response with references to data
storages (a Sensor Observation Service and an online folder).

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 151

Listing 13 - DescribeResultAccess response example
<sps:DescribeResultAccessResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xlink="http://www.w3.org/1999/xlink">
 <sps:availability>
 <sps:available>
 <sps:DataAvailable>
 <sps:dataReference>
 <ows:ReferenceGroup>

<ows:Identifier>http://www.ogc.org/procedure/camera/1/accessReferenceGroups/1</ows:Identi
fier>
 <ows:Reference xlink:href="http://www.ogc.org/SOS"
xlink:role="http://www.opengis.net/spec/SPS/2.0/referenceType/ServiceURL">

<ows:Identifier>http://www.ogc.org/procedure/camera/1/accessReferenceGroups/1/references/
1</ows:Identifier>
 <ows:Metadata>
 <sps:SPSMetadata>
 <sps:dataAccessType>http://www.opengis.net/sos/2.0</sps:dataAccessType>
 </sps:SPSMetadata>
 </ows:Metadata>
 </ows:Reference>
 </ows:ReferenceGroup>
 </sps:dataReference>
 <sps:dataReference>
 <ows:ReferenceGroup>

<ows:Identifier>http://www.ogc.org/procedure/camera/1/accessReferenceGroups/2</ows:Identi
fier>
 <ows:Reference xlink:href="http://www.ogc.org/SOS/procedure/camera/1/videos"
xlink:role="http://www.opengis.net/spec/SPS/2.0/referenceType/Folder">

<ows:Identifier>http://www.ogc.org/procedure/camera/1/accessReferenceGroups/2/references/
1</ows:Identifier>
 <ows:Format>video/mj2</ows:Format>
 </ows:Reference>
 </ows:ReferenceGroup>
 </sps:dataReference>
 </sps:DataAvailable>
 </sps:available>
 </sps:availability>
</sps:DescribeResultAccessResponse>

9.6.3 Getting the Tasking Parameter Description

2010-08-20T11:08:32+02:00 – The client sends a DescribeTasking request for the
procedure to the service to find out about the available tasking options.

Listing 14 - DescribeTasking request example
<sps:DescribeTasking service="SPS" version="2.0.0"
xmlns:sps="http://www.opengis.net/sps/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
</sps:DescribeTasking>

2010-08-20T11:08:33+02:00 – The service sends a response with the tasking parameter
description for the procedure.

Listing 15 - DescribeTasking response example
<sps:DescribeTaskingResponse xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:sps="http://www.opengis.net/sps/2.0" xmlns:swe="http://www.opengis.net/swe/2.0"

OGC 09-000

152 Copyright © 2011 Open Geospatial Consortium

xmlns:swes="http://www.opengis.net/swes/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:taskingParameters name="CameraTask">
 <swe:DataRecord>
 <swe:field name="taskTimeFrame">
 <swe:TimeRange definition="http://www.opengis.net/def/property/OGC-
SPS/0/TaskTimeFrame" referenceFrame="http://www.opengis.net/def/trs/BIPM/0/UTC"
optional="false" updatable="false">
 <swe:label>Task Timeframe</swe:label>
 <swe:description>Desired start and end time for tasking the
sensor</swe:description>
 <swe:uom xlink:href="http://www.opengis.net/def/uom/ISO-8601/0/Gregorian"/>
 </swe:TimeRange>
 </swe:field>
 <swe:field name="positioningChoice">
 <swe:DataChoice optional="true">
 <swe:item name="pointToLookAt">
 <swe:Vector definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/PointToLookAt" referenceFrame="http://www.opengis.net/def/crs/EPSG/0/4979">
 <swe:label>Look Pointer</swe:label>
 <swe:description>3D location where the camera should look
at</swe:description>
 <swe:coordinate name="lat">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Latitude" axisID="Lat">
 <swe:label>Geodetic latitude</swe:label>
 <swe:uom xlink:href="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="long">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Longitude" axisID="Long">
 <swe:label>Geodetic longitude</swe:label>
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="h">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Vertical" axisID="h">
 <swe:label>Ellipsoidal height</swe:label>
 <swe:uom code="m"/>
 <swe:value>0</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:item>
 <swe:item name="relativePositioning">
 <swe:DataRecord definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativePan">
 <swe:label>Relative Positioning</swe:label>
 <swe:description>Camera movement relative to the current
position</swe:description>
 <swe:field name="relativeHorizontalPan">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativeHorizontalPan" optional="true">
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-180 180</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 <swe:field name="relativeVerticalPan">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativeVerticalPan" optional="true">
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-90 90</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 153

 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:field>
 <swe:field name="focalLength">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/FocalLength" optional="true">
 <swe:label>Focal length</swe:label>
 <swe:description>Focal length of the camera. Controls the camera's zoom
level.</swe:description>
 <swe:uom code="mm"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>3.5 10</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </sps:taskingParameters>
</sps:DescribeTaskingResponse>

9.6.4 Determining the Feasibility of a Tasking Request

2010-08-20T11:10:00+02:00 - Satisfied with the information the client got about the
procedure, the client sends a GetFeasibility request to check if the time frame from 2010-
08-20T12:15:00+02:00 to 2010-08-20T14:45:00+02:00 would be a feasible task. The
latest response time is set to 2010-08-20T11:15:00+02:00.

Listing 16 – GetFeasibility request example
<sps:GetFeasibility service="SPS" version="2.0.0"
xmlns:sps="http://www.opengis.net/sps/2.0" xmlns:swe="http://www.opengis.net/swe/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@" />
 </sps:encoding>
 <sps:values>2010-08-20T12:15:00+02:00,2010-08-20T14:45:00+02:00,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 <sps:latestResponseTime>2010-08-20T11:15:00+02:00</sps:latestResponseTime>
</sps:GetFeasibility>

2010-08-20T11:10:12+02:00 – The service sends a response indicating that the requested
task is not feasible. But it provides two alternatives in the response:

a) First alternative indicates that time frame from 2010-08-20T12:35:00+02:00 to
2010-08-20T14:30:00+02:00 would be feasible.

b) Second alternative indicates that time frame from 2010-08-20T15:10:00+02:00 to
2010-08-20T17:00:00+02:00 would be feasible.

OGC 09-000

154 Copyright © 2011 Open Geospatial Consortium

Listing 17 – GetFeasibility response example
<sps:GetFeasibilityResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:swe="http://www.opengis.net/swe/2.0">
 <sps:latestResponseTime>2010-08-20T12:00:00+02:00</sps:latestResponseTime>
 <sps:result>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/5</sps:task>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Rejected</sps:requestStatus>
 <sps:statusMessage xml:lang="en">The task was not feasible because the requested
time frame is not free</sps:statusMessage>
 <sps:updateTime>2010-08-20T11:10:12+02:00</sps:updateTime>
 <sps:alternative>
 <sps:Alternative>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>2010-08-20T12:35:00+02:00,2010-08-
20T14:30:00+02:00,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:Alternative>
 </sps:alternative>
 <sps:alternative>
 <sps:Alternative>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>2010-08-20T15:10:00+02:00,2010-08-
20T17:00:00+02:00,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:Alternative>
 </sps:alternative>
 </sps:StatusReport>
 </sps:result>
</sps:GetFeasibilityResponse>

9.6.5 Scheduling a Task (Submit / Reserve)

2010-08-20T11:10:20+02:00 – The client reviews the alternatives and decides to use the
first one with slight alteration of the task start time (setting it to 2010-08-
20T12:37:00+02:00). The client then adds some more specific parameters to control the
camera. It requests that the camera looks at the location [geodetic latitude 51.902112 deg,
geodetic longitude 8.192728 deg, ellipsoidal height 0 meter] and sets the focal length to
3.5mm.

2010-08-20T11:12:00+02:00 – The client schedules the task. This can be done either via
directly submitting a task or by reserving it first and then confirming it a bit later on
(which is useful for scenarios where multiple sensors need to be tasked together).

9.6.5.1 Task Submission

2010-08-20T11:12:00+02:00 – The client sends a Submit request to the service. The
latest response time is not set for this request, so the client is willing to wait however long
the processing of the response is going to take.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 155

Listing 18 - Submit request example
<sps:Submit service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@" />
 </sps:encoding>
 <sps:values>2010-08-20T12:37:00+02:00,2010-08-
20T14:30:00+02:00,Y,pointToLookAt,51.902112,8.192728,0,Y,3.5</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
</sps:Submit>

2010-08-20T11:12:04+02:00 – The service sends a response indicating that the task was
accepted and is now in execution, so will be performed as planned.

Listing 19 - Submit response example
<sps:SubmitResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:swe="http://www.opengis.net/swe/2.0">
 <sps:result>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskSubmitted</sps:event>
 <sps:percentCompletion>0</sps:percentCompletion>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:12:04+02:00</sps:updateTime>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>2010-08-20T12:37:00+02:00,2010-08-
20T14:30:00+02:00,Y,pointToLookAt,51.902112,8.192728,0,Y,3.5</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:StatusReport>
 </sps:result>
</sps:SubmitResponse>

9.6.5.2 Reserving a Task

2010-08-20T11:12:00+02:00 – The client sends a Reserve request to the service. The
latest response time is set to 2010-08-20T11:20:00+02:00. The expiration time of the
requested reservation is set to 2010-08-20T11:30:00+02:00.

OGC 09-000

156 Copyright © 2011 Open Geospatial Consortium

Listing 20 - Reserve request example
<sps:Reserve service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@" />
 </sps:encoding>
 <sps:values>2010-08-20T12:37:00+02:00,2010-08-
20T14:30:00+02:00,Y,pointToLookAt,51.902112,8.192728,0,Y,3.5</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 <sps:latestResponseTime>2010-08-20T11:20:00+02:00</sps:latestResponseTime>
 <sps:reservationExpiration>2010-08-20T11:30:00+02:00</sps:reservationExpiration>
</sps:Reserve>

2010-08-20T11:12:01+02:00 – The service sends a response indicating that the
reservation was successful. It will expire at 2010-08-20T11:30:00+02:00.

Listing 21 - Reserve response example
<sps:ReserveResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:result>
 <sps:ReservationReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:estimatedToC>2010-08-20T14:30:00+02:00</sps:estimatedToC>
 <sps:event>TaskReserved</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>Reserved</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:12:01+02:00</sps:updateTime>
 <sps:reservationExpiration>2010-08-20T11:30:00+02:00</sps:reservationExpiration>
 </sps:ReservationReport>
 </sps:result>
</sps:ReserveResponse>

Now there are several options: the task automatically expires at 2010-08-
20T11:30:00+02:00, the client confirms, updates or cancels the task beforehand or the
task fails for some reason. The option that the reservation was updated is not considere
here.

9.6.5.3 Automatic Reservation Expiration

2010-08-20T12:00:00+02:00 – The client sends a GetStatus request to the service. The
"since" parameter, although supported by the service, is not used in the request. Thus the
current status of the task is requested.

Listing 22 - GetStatus request example
<sps:GetStatus service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
</sps:GetStatus>

2010-08-20T12:00:01+02:00 – The service sends a response with information about the
current status of the task, indicating that the reservation expired (at 2010-08-
20T11:30:00+02:00).

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 157

Listing 23 - GetStatus response example for expired reservation
<sps:GetStatusResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:swes="http://www.opengis.net/swes/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>ReservationExpired</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:statusMessage xml:lang="en">Your reservation expired as it was not confirmed
before the agreed expiration time.</sps:statusMessage>
 <sps:taskStatus>Expired</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:30:00+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:status>
</sps:GetStatusResponse>

9.6.5.4 Confirming a Reserved Task

2010-08-20T11:23:00+02:00 – The client sends a Confirm request to the service to
confirm the reservation.

Listing 24 - Confirm request example
<sps:Confirm service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
</sps:Confirm>

2010-08-20T11:23:08+02:00 – The service sends a response indicating that the task was
confirmed and is now in execution, so will be performed as planned.

Listing 25 - Confirm response example
<sps:ConfirmResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:result>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:updateTime>2010-08-20T11:23:08+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:result>
</sps:ConfirmResponse>

2010-08-20T12:00:00+02:00 – The client sends a GetTask request to the service.

Listing 26 - GetTask request example
<sps:GetTask service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
</sps:GetTask>

2010-08-20T12:00:01+02:00 – The service sends a response with information about the
task, including all state transitions made so far. All transitions are reported because the
service supports state logging. Note that here the tasking parameters used in reserving the
task are also included.

OGC 09-000

158 Copyright © 2011 Open Geospatial Consortium

Listing 27 - GetTask response example
<sps:GetTaskResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:swes="http://www.opengis.net/swes/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:task>
 <sps:Task>
 <swes:identifier>http://www.ogc.org/procedure/camera/1/tasks/6</swes:identifier>
 <sps:status>
 <sps:ReservationReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:estimatedToC>2010-08-20T14:30:00+02:00</sps:estimatedToC>
 <sps:event>TaskReserved</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>Reserved</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:12:01+02:00</sps:updateTime>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>2010-08-20T12:37:00+02:00,2010-08-
20T14:30:00+02:00,Y,pointToLookAt,51.902112,8.192728,0,Y,3.5</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 <sps:reservationExpiration>2010-08-
20T11:30:00+02:00</sps:reservationExpiration>
 </sps:ReservationReport>
 </sps:status>
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskConfirmed</sps:event>
 <sps:percentCompletion>0</sps:percentCompletion>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:23:08+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:status>
 </sps:Task>
 </sps:task>
</sps:GetTaskResponse>

9.6.5.5 Cancelling a Scheduled Task

2010-08-20T11:23:00+02:00 – The client made up his mind and sends a Cancel request
to the service as it does no longer want the task to be executed/reserved.

Listing 28 - Cancel request example
<sps:Cancel service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
</sps:Cancel>

2010-08-20T11:23:08+02:00 – The service sends a response indicating that the (reserved)
task was cancelled.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 159

Listing 29 - Cancel response example
<sps:CancelResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:result>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:updateTime>2010-08-20T11:23:08+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:result>
</sps:CancelResponse>

9.6.5.6 Task Failure

2010-08-20T11:29:00+02:00 - Before the task expires, the client sends a GetStatus
request to the service. The "since" parameter, although supported by the service, is not
used in the request. Thus the current status of the task is requested.

The request is essentially the same as the one shown in Listing 22

2010-08-20T11:29:01+02:00 – The service sends a response with information about the
current status of the task, indicating that the reservation failed (at 2010-08-
20T11:28:30+02:00).

Listing 30 - GetStatus response example for failed task
<sps:GetStatusResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:swes="http://www.opengis.net/swes/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskFailed</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:statusMessage xml:lang="en">Your reservation failed because an emergency
tasking action required use of the resources that were reserved for your
task.</sps:statusMessage>
 <sps:taskStatus>Failed</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:28:30+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:status>
</sps:GetStatusResponse>

9.6.5.7 Updating a Scheduled Task

Assuming that the task is now in execution the client can update it.

2010-08-20T12:40:00+02:00 – The client sends an Update request to the service,
requesting that the camera be moved 10 degrees left. The latest response time is set to
2010-08-20T12:41:00+02:00.

OGC 09-000

160 Copyright © 2011 Open Geospatial Consortium

Listing 31 - Update request example
<sps:Update service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>Y,relativePositioning,Y,-10,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 <sps:latestResponseTime>2010-08-20T12:41:00+02:00</sps:latestResponseTime>
 <sps:targetTask>http://www.ogc.org/procedure/camera/1/tasks/6</sps:targetTask>
</sps:Update>

Note: the tasking parameters available for update are a subset of the parameters described
in the DescribeTaskingResponse - all parameters that have attribute updatable=false are
not used in an update request. The description of the tasking parameter relevant for an
Update request is shown in the following listing.

Listing 32 - DataRecord example with tasking parameter description relevant for Update request
<swe:DataRecord xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <swe:field name="positioningChoice">
 <swe:DataChoice optional="true">
 <swe:item name="pointToLookAt">
 <swe:Vector definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/PointToLookAt" referenceFrame="http://www.opengis.net/def/crs/EPSG/0/4979">
 <swe:label>Look Pointer</swe:label>
 <swe:description>3D location where the camera should look at</swe:description>
 <swe:coordinate name="lat">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Latitude" axisID="Lat">
 <swe:label>Geodetic latitude</swe:label>
 <swe:uom xlink:href="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="long">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Longitude" axisID="Long">
 <swe:label>Geodetic longitude</swe:label>
 <swe:uom code="deg"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="h">
 <swe:Quantity
definition="http://sweet.jpl.nasa.gov/2.0/spaceCoordinates.owl#Vertical" axisID="h">
 <swe:label>Ellipsoidal height</swe:label>
 <swe:uom code="m"/>
 <swe:value>0</swe:value>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </swe:item>
 <swe:item name="relativePositioning">
 <swe:DataRecord definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativePan">
 <swe:label>Relative Positioning</swe:label>
 <swe:description>Camera movement relative to the current
position</swe:description>
 <swe:field name="relativeHorizontalPan">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativeHorizontalPan" optional="true">
 <swe:uom code="deg"/>
 <swe:constraint>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 161

 <swe:AllowedValues>
 <swe:interval>-180 180</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 <swe:field name="relativeVerticalPan">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/RelativeVerticalPan" optional="true">
 <swe:uom code="deg"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>-90 90</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:item>
 </swe:DataChoice>
 </swe:field>
 <swe:field name="focalLength">
 <swe:Quantity definition="http://www.opengis.net/def/property/OGC-SPS-X-
CAM/0/FocalLength" optional="true">
 <swe:label>Focal length</swe:label>
 <swe:description>Focal length of the camera. Controls the camera's zoom
level.</swe:description>
 <swe:uom code="mm"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>3.5 10</swe:interval>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
</swe:DataRecord>

2010-08-20T12:40:01+02:00 – The service sends a response indicating that the final
decision on the update is pending. The service confirms that the latest response time is
2010-08-20T12:41:00+02:00. Note that the response has a different task identifier than
the one used in the request as the response informs about the status of the update request
itself, not of the task that was the target of the request. This is necessary to get
information about pending update requests via the GetStatus operation as we will see in
the following.

Listing 33 - Update response example indicating request is pending
<sps:UpdateResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:swe="http://www.opengis.net/swe/2.0">
 <sps:latestResponseTime>2010-08-20T12:41:00+02:00</sps:latestResponseTime>
 <sps:result>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6/updates/1</sps:task>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Pending</sps:requestStatus>
 <sps:updateTime>2010-08-20T12:40:01+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:result>
 <sps:targetTask>http://www.ogc.org/procedure/camera/1/tasks/6</sps:targetTask>
</sps:UpdateResponse>

2010-08-20T12:41:01+02:00 – The client sends a GetStatus request to learn what the
final decision for the update request was (this request can of course also be sent before
the latest response time).

OGC 09-000

162 Copyright © 2011 Open Geospatial Consortium

Listing 34 - GetStatus response example targetting update request
<sps:GetStatus service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6/updates/1</sps:task>
</sps:GetStatus>

9.6.5.8 Usage of LatestResponseTime

Now there are two options: either the service did or did not provide the final response on
the update request before the latest response time.

9.6.5.8.1 Final Response Not Provided Before Latest Response Time

2010-08-20T12:41:02+02:00 – The service sends a response indicating that the update
request automatically expired and therefore was (automatically) rejected.

Listing 35 - GetStatus response indicating pending update request expired and was rejected
<sps:GetStatusResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:swes="http://www.opengis.net/swes/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6/updates/1</sps:task>
 <sps:event>TaskingRequestExpired</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Rejected</sps:requestStatus>
 <sps:updateTime>2010-08-20T12:41:00+02:00</sps:updateTime>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>Y,relativePositioning,Y,-10,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:StatusReport>
 </sps:status>
</sps:GetStatusResponse>

9.6.5.8.2 Final Response is Provided Before Latest Response Time

2010-08-20T12:41:02+02:00 – The service sends a response indicating that the update
was accepted and performed as planned.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 163

Listing 36 - GetStatus response indicating pending update request was accepted
<sps:GetStatusResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:swes="http://www.opengis.net/swes/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6/updates/1</sps:task>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:updateTime>2010-08-20T12:40:50+02:00</sps:updateTime>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>Y,relativePositioning,Y,-10,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:StatusReport>
 </sps:status>
</sps:GetStatusResponse>

9.6.5.9 Task Completion

2010-08-20T14:35:00+02:00 – The client sends a GetTask request to get a complete
description of the task the service performed for him.

The request is essentially the same as the one shown in Listing 26.

2010-08-20T14:35:01+02:00 – The service sends a response that includes the full state
history of the task (as the service supports state logging).

Note: this example assumes that the task was submitted, not reserved first; intermediate data publication is
shown as well a task update.

Listing 37 - GetTask response for completed task
<sps:GetTaskResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:swes="http://www.opengis.net/swes/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:task>
 <sps:Task>
 <swes:identifier>http://www.ogc.org/procedure/camera/1/tasks/6</swes:identifier>
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskSubmitted</sps:event>
 <sps:percentCompletion>0</sps:percentCompletion>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:12:04+02:00</sps:updateTime>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>2010-08-20T12:37:00+02:00,2010-08-
20T14:30:00+02:00,Y,pointToLookAt,51.902112,8.192728,0,Y,3.5</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:StatusReport>
 </sps:status>
 <sps:status>
 <sps:StatusReport>

OGC 09-000

164 Copyright © 2011 Open Geospatial Consortium

 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>DataPublished</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T12:37:00.001+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:status>
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskUpdated</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T12:40:50+02:00</sps:updateTime>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>Y,relativePositioning,Y,-10,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:StatusReport>
 </sps:status>
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskCompleted</sps:event>
 <sps:percentCompletion>100</sps:percentCompletion>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>Completed</sps:taskStatus>
 <sps:updateTime>2010-08-20T14:30:00+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:status>
 </sps:Task>
 </sps:task>
</sps:GetTaskResponse>

A GetStatus request with since parameter - supported by the service in this scenario - can
yield a similar result but clients can also retrieve only those parts of the state log for a
task that they do not already know. Let us assume that the client already performed a
GetStatus request at 2010-08-20T12:37:05+02:00.

2010-08-20T14:00:00.00+02:00 – The client sends a GetStatus request with "since"
parameter to the service, set to the value 2010-08-20T12:37:05+02:00.

Listing 38 - GetStatus request example with since parameter
<sps:GetStatus service="SPS" version="2.0.0" xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:since>2010-08-20T12:37:05+02:00</sps:since>
</sps:GetStatus>

2010-08-20T14:00:00.01+02:00 – The service sends a response providing information
about the last two state transitions only.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 165

Listing 39 - GetStatus response example for request with since parameter
<sps:GetStatusResponse xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:swes="http://www.opengis.net/swes/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskUpdated</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T12:40:50+02:00</sps:updateTime>
 <sps:taskingParameters>
 <sps:ParameterData>
 <sps:encoding>
 <swe:TextEncoding tokenSeparator="," blockSeparator="@@"/>
 </sps:encoding>
 <sps:values>Y,relativePositioning,Y,-10,N,N</sps:values>
 </sps:ParameterData>
 </sps:taskingParameters>
 </sps:StatusReport>
 </sps:status>
 <sps:status>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskCompleted</sps:event>
 <sps:percentCompletion>100</sps:percentCompletion>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>Completed</sps:taskStatus>
 <sps:updateTime>2010-08-20T14:30:00+02:00</sps:updateTime>
 </sps:StatusReport>
 </sps:status>
</sps:GetStatusResponse>

9.6.6 Getting Result Access Information for a Task

2010-08-20T14:36:00+02:00 – The client sends a DescribeResultAccess request to get
references to data (services) for the task.

Listing 40 - DescribeResultAccess request example targetting a task
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1">
 <soap12:Body>
 <sps:DescribeResultAccess service="SPS" version="2.0.0">
 <sps:target>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 </sps:target>
 </sps:DescribeResultAccess>
 </soap12:Body>
</soap12:Envelope>

2010-08-20T14:36:01+02:00 - The service sends a response providing the requested
information for accessing the data gathered for the task.

Listing 41 - DescribeResultAccess response example with access information for a task
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:swe="http://www.opengis.net/swe/2.0" xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:sos="http://www.opengis.net/sos/2.0" xmlns:fes="http://www.opengis.net/fes/2.0"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:xlink="http://www.w3.org/1999/xlink">
 <soap12:Body>

OGC 09-000

166 Copyright © 2011 Open Geospatial Consortium

 <sps:DescribeResultAccessResponse>
 <sps:availability>
 <sps:available>
 <sps:DataAvailable>
 <sps:dataReference>
 <ows:ReferenceGroup>

<ows:Identifier>http://www.ogc.org/procedure/camera/1/tasks/6/accessReferenceGroups/1</ow
s:Identifier>
 <ows:ServiceReference xlink:href="http://www.ogc.org/SOS"
xlink:role="http://www.opengis.net/spec/SPS/2.0/referenceType/FullServiceAccess">

<ows:Identifier>http://www.ogc.org/procedure/camera/1/accessReferenceGroups/1/references/
1</ows:Identifier>
 <ows:Format>application/xml</ows:Format>
 <ows:Metadata>
 <sps:SPSMetadata>

<sps:dataAccessType>http://www.opengis.net/sos/2.0/GetObservation</sps:dataAccessType>
 </sps:SPSMetadata>
 </ows:Metadata>
 <ows:RequestMessage>
 <soap12:Envelope>
 <soap12:Body>
 <sos:GetObservation service="SOS" version="2.0.0">

<sos:observedProperty>http://www.opengis.net/def/propertyType/x-
radiance</sos:observedProperty>

<sos:procedure>http://www.ogc.org/procedure/camera/1</sos:procedure>
 <sos:temporalFilter>
 <fes:During>
 <fes:ValueReference>phenomenonTime</fes:ValueReference>
 <gml:TimePeriod gml:id="gid01">
 <gml:beginPosition>2010-08-
20T12:37:00+02:00</gml:beginPosition>
 <gml:endPosition>2010-08-
20T14:30:00+02:00</gml:endPosition>
 </gml:TimePeriod>
 </fes:During>
 </sos:temporalFilter>
 </sos:GetObservation>
 </soap12:Body>
 </soap12:Envelope>
 </ows:RequestMessage>
 </ows:ServiceReference>
 </ows:ReferenceGroup>
 </sps:dataReference>
 <sps:dataReference>
 <ows:ReferenceGroup>

<ows:Identifier>http://www.ogc.org/procedure/camera/1/tasks/6/accessReferenceGroups/2</ow
s:Identifier>
 <ows:Reference
xlink:href="http://www.ogc.org/procedure/camera/1/videos/task_6.mj2"
xlink:role="http://www.opengis.net/spec/SPS/2.0/referenceType/Resource">

<ows:Identifier>http://www.ogc.org/procedure/camera/1/tasks/6/accessReferenceGroups/2/ref
erences/1</ows:Identifier>
 <ows:Format>video/mj2</ows:Format>
 </ows:Reference>
 </ows:ReferenceGroup>
 </sps:dataReference>
 </sps:DataAvailable>
 </sps:available>
 </sps:availability>
 </sps:DescribeResultAccessResponse>
 </soap12:Body>
</soap12:Envelope>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 167

The example response shows that the client may (need to) modify the given request; for
example credentials or WS-Addressing header-information may need to be added.

9.6.7 Service Exceptions

At some point in time after the required provision time for status information of a task /
tasking request a client might request status information for it via the GetStatus / GetTask
operation. If the service then already removed this information, it will return a
StatusInformationExpired exception.

Listing 42 – StatusInformationExpired exception example
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1">
 <soap12:Body>
 <soap12:Fault>
 <soap12:Code>
 <soap12:Value>soap12:Receiver</soap12:Value>
 <soap12:Subcode>
 <soap12:Value>sps:StatusInformationExpired</soap12:Value>
 </soap12:Subcode>
 </soap12:Code>
 <soap12:Reason>
 <soap12:Text xml:lang="en">The status information for the requested task has
already expired.</soap12:Text>
 </soap12:Reason>
 <soap12:Detail>
 <ows:Exception exceptionCode="StatusInformationExpired">
 <ows:ExceptionText>The service has removed all status information for the given
task / tasking request (the required provision time has already
passed).</ows:ExceptionText>
 </ows:Exception>
 </soap12:Detail>
 </soap12:Fault>
 </soap12:Body>
</soap12:Envelope>

In case that the client sent a request to the service that is not valid according to its XML
Schema definition, the service returns an InvalidRequest exception.

OGC 09-000

168 Copyright © 2011 Open Geospatial Consortium

Listing 43 - InvalidRequest exception example
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:swes="http://www.opengis.net/swes/2.0">
 <soap12:Body>
 <soap12:Fault>
 <soap12:Code>
 <soap12:Value>soap12:Sender</soap12:Value>
 <soap12:Subcode>
 <soap12:Value>swes:InvalidRequest</soap12:Value>
 </soap12:Subcode>
 </soap12:Code>
 <soap12:Reason>
 <soap12:Text xml:lang="en">The request did not conform to its XML Schema
definition.</soap12:Text>
 </soap12:Reason>
 <soap12:Detail>
 <ows:Exception exceptionCode="InvalidRequest" locator="element sps:extension is
not expected after element sps:GetStatus/sps:task"/>
 </soap12:Detail>
 </soap12:Fault>
 </soap12:Body>
</soap12:Envelope>

If the client sent a GetStatus request with a task identifier that is unknown to the service
then the service returns an InvalidParameterValue exception like the following:

Listing 44 - InvalidParameterValue exception example
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:sps="http://www.opengis.net/sps/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:ows="http://www.opengis.net/ows/1.1">
 <soap12:Body>
 <soap12:Fault>
 <soap12:Code>
 <soap12:Value>soap12:Sender</soap12:Value>
 <soap12:Subcode>
 <soap12:Value>ows:InvalidParameterValue</soap12:Value>
 </soap12:Subcode>
 </soap12:Code>
 <soap12:Reason>
 <soap12:Text xml:lang="en">The request contained an invalid parameter
value.</soap12:Text>
 </soap12:Reason>
 <soap12:Detail>
 <ows:Exception exceptionCode="InvalidParameterValue" locator="task">
 <ows:ExceptionText>The requested task / tasking request is unknown to the
service.</ows:ExceptionText>
 </ows:Exception>
 </soap12:Detail>
 </soap12:Fault>
 </soap12:Body>
</soap12:Envelope>

9.6.8 Notifications

As the service realizes publish / subscribe functionality, the client may subscribe for
notifications published by the service. The following examples are about notifications
published for the submitted task and an according subscription.

2010-08-20T11:12:05+02:00 - Right after it received the SubmitResponse telling him
that the service accepted its tasking request, the client subscribes to notifications for the

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 169

task that is in execution. It sends the according Subscribe request to the producer
endpoint stated by the SPS in the notifications section of its Capabilities document.

Listing 45 - Subscribe request example
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsn-b="http://docs.oasis-open.org/wsn/b-2">
 <soap12:Body>
 <wsn-b:Subscribe>
 <wsn-b:ConsumerReference>
 <wsa:Address>http://my.client.com/client/myNotificationConsumer</wsa:Address>
 </wsn-b:ConsumerReference>
 <wsn-b:Filter>
 <wsn-b:TopicExpression Dialect="http://www.w3.org/TR/1999/REC-xpath-
19991116">//sps:TaskEvent/*[@wstop:topic='true']</wsn-b:TopicExpression>
 <wsn-b:MessageContent Dialect="http://www.w3.org/TR/1999/REC-xpath-
19991116">boolean(//*[sps:task = 'http://www.ogc.org/procedure/camera/1/tasks/6'])</wsn-
b:MessageContent>
 </wsn-b:Filter>
 </wsn-b:Subscribe>
 </soap12:Body>
</soap12:Envelope>

2010-08-20T11:12:06+02:00 - The service sends a response indicating that the
subscription will last until 2010-08-20T14:31:00+02:00.

This time is shortly after the requested task end time. Note, however, that in WS-
Notification the choice of the actual termination time depends upon the actual service
implementation if no specific time was requested by the client. Although the way the
default choice for termination time of a task as shown in this example is a useful pattern,
the SPS specification does not state requirements concerning the duration of a task or the
termination time of subscriptions that may target notifications published for it. Such
requirements could be defined in an SPS extension.

Listing 46 - Subscribe response example
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsn-b="http://docs.oasis-open.org/wsn/b-2">
 <soap12:Body>
 <wsn-b:SubscribeResponse>
 <wsn-b:SubscriptionReference>
 <wsa:Address>http://www.ogc.org/SPS/Producer/subscriptions/792</wsa:Address>
 </wsn-b:SubscriptionReference>
 <wsn-b:TerminationTime>2010-08-20T14:31:00+02:00</wsn-b:TerminationTime>
 </wsn-b:SubscribeResponse>
 </soap12:Body>
</soap12:Envelope>

Following the examples given so far, the service would have published the following
notifications for the task the client targeted in its subscription: a notification for a
TaskingRequestAccepted (task was submitted), DataPublished and for a TaskCompleted
event

OGC 09-000

170 Copyright © 2011 Open Geospatial Consortium

Listing 47 – Example notification of TaskingRequestAccepted event published on TaskSubmission
topic
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xsi:schemaLocation="http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope/soap-envelope.xsd
http://www.opengis.net/sps/2.0 http://schemas.opengis.net/sps/2.0/sps.xsd
http://docs.oasis-open.org/wsn/b-2 http://docs.oasis-open.org/wsn/b-2.xsd"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wsn-b="http://docs.oasis-
open.org/wsn/b-2">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myNotificationConsumer</wsa:To>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationConsumer/Notify</wsa:Action>
 </soap12:Header>
 <soap12:Body>
 <wsn-b:Notify>
 <wsn-b:NotificationMessage>
 <wsn-b:SubscriptionReference>
 <wsa:Address>http://www.ogc.org/SPS/Producer/subscriptions/792</wsa:Address>
 </wsn-b:SubscriptionReference>
 <wsn-b:Topic Dialect="http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Concrete">sps:TaskEvent/TaskSubmission</wsn-b:Topic>
 <wsn-b:Message>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskSubmitted</sps:event>
 <sps:percentCompletion>0</sps:percentCompletion>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T11:12:04+02:00</sps:updateTime>
 </sps:StatusReport>
 </wsn-b:Message>
 </wsn-b:NotificationMessage>
 </wsn-b:Notify>
 </soap12:Body>
</soap12:Envelope>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 171

Listing 48 – Example notification of DataPublished event
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wsn-b="http://docs.oasis-open.org/wsn/b-
2">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myNotificationConsumer</wsa:To>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationConsumer/Notify</wsa:Action>
 </soap12:Header>
 <soap12:Body>
 <wsn-b:Notify>
 <wsn-b:NotificationMessage>
 <wsn-b:SubscriptionReference>
 <wsa:Address>http://www.ogc.org/SPS/Producer/subscriptions/792</wsa:Address>
 </wsn-b:SubscriptionReference>
 <wsn-b:Topic Dialect="http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Concrete">sps:TaskEvent/DataPublication</wsn-b:Topic>
 <wsn-b:Message>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>DataPublished</sps:event>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>InExecution</sps:taskStatus>
 <sps:updateTime>2010-08-20T12:37:00.001+02:00</sps:updateTime>
 </sps:StatusReport>
 </wsn-b:Message>
 </wsn-b:NotificationMessage>
 </wsn-b:Notify>
 </soap12:Body>
</soap12:Envelope>

OGC 09-000

172 Copyright © 2011 Open Geospatial Consortium

Listing 49 – Example notification of TaskCompleted event
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wsn-b="http://docs.oasis-open.org/wsn/b-
2">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myNotificationConsumer</wsa:To>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationConsumer/Notify</wsa:Action>
 </soap12:Header>
 <soap12:Body>
 <wsn-b:Notify>
 <wsn-b:NotificationMessage>
 <wsn-b:SubscriptionReference>
 <wsa:Address>http://www.ogc.org/SPS/Producer/subscriptions/792</wsa:Address>
 </wsn-b:SubscriptionReference>
 <wsn-b:Topic Dialect="http://docs.oasis-open.org/wsn/t-
1/TopicExpression/Concrete">sps:TaskEvent/TaskCompletion</wsn-b:Topic>
 <wsn-b:Message>
 <sps:StatusReport>
 <sps:task>http://www.ogc.org/procedure/camera/1/tasks/6</sps:task>
 <sps:event>TaskCompleted</sps:event>
 <sps:percentCompletion>100</sps:percentCompletion>
 <sps:procedure>http://www.ogc.org/procedure/camera/1</sps:procedure>
 <sps:requestStatus>Accepted</sps:requestStatus>
 <sps:taskStatus>Completed</sps:taskStatus>
 <sps:updateTime>2010-08-20T14:30:00+02:00</sps:updateTime>
 </sps:StatusReport>
 </wsn-b:Message>
 </wsn-b:NotificationMessage>
 </wsn-b:Notify>
 </soap12:Body>
</soap12:Envelope>

9.6.9 Using WS-Addressing

Usually the communication between client and SPS can be performed via SOAP without
the addition of WS-Addressing header information. However, in some cases it is useful to
leverage the functionality provided by WS-Addressing. This document is not the place to
give a tutorial on WS-Addressing. However, the following listings provide some
examples of SPS operation requests and responses (including a WS-Notification
Subscribe invocation example) where WS-Addressing header information is added to the
SOAP messages.

Listing 50 – GetCapabilities example using WS-Addressing header information
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap12:Header>
 <wsa:To>http://www.ogc.org/SPS</wsa:To>
 <wsa:Action>http://www.opengis.net/sps/2.0/GetCapabilities</wsa:Action>
 <wsa:ReplyTo>
 <wsa:Address>http://my.client.com/client/myReceiver</wsa:Address>
 </wsa:ReplyTo>
 <wsa:MessageID>http://my.client.com/uid/msg-0010</wsa:MessageID>
 </soap12:Header>
 <soap12:Body>
 <sps:GetCapabilities/>
 </soap12:Body>
</soap12:Envelope>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 173

The meaning of the header fields is as follows:

• wsa:To – address of the intended receiver of this message
• wsa:Action – uniquely identifies the semantics implied by this message; in this

example it tells the service that the SPS GetCapabilities operation is invoked
• wsa:ReplyTo – the address of the endpoint where the response is expected to be

sent to; in this example the response shall be sent asynchronously
• wsa:MessageID – a unique identifier for the message which is also used in the

response sent by the service later on so that the client knows to which request an
incoming – asynchronously sent – response refers to

The according reply would look like shown in the following listing.

Listing 51 – Capabilities example using WS-Addressing header information
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xsi:schemaLocation="http://www.w3.org/2003/05/soap-envelope
http://www.w3.org/2003/05/soap-envelope/soap-envelope.xsd
http://www.opengis.net/sps/2.0 http://schemas.opengis.net/sps/2.0/sps.xsd
http://www.w3.org/2005/08/addressing http://www.w3.org/2005/08/addressing/ws-addr.xsd"
xmlns:sps="http://www.opengis.net/sps/2.0" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.opengis.net/gml/3.2"
xmlns:swes="http://www.opengis.net/swes/2.0" xmlns:wstop="http://docs.oasis-
open.org/wsn/t-1">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myReceiver</wsa:To>
 <wsa:Action>http://www.opengis.net/sps/2.0/GetCapabilitiesResponse</wsa:Action>
 <wsa:RelatesTo>http://my.client.com/uid/msg-0010</wsa:RelatesTo>
 </soap12:Header>
 <soap12:Body>
 <!-- like shown in Listing 11-->
 </soap12:Body>
</soap12:Envelope>

As we can see, the wsa:To has the value of the wsa:ReplyTo header field from the
request shown in Listing 50 – same for the wsa:RelatesTo element which has the value of
the wsa:MessageID from the request. The wsa:Action is now used to convey the
information that the SOAP message contains the response to an SPS GetCapabilities
invocation.

The Subscribe request as shown in Listing 45 can also be augmented with WS-
Addressing header information.

OGC 09-000

174 Copyright © 2011 Open Geospatial Consortium

Listing 52 – Subscribe example using WS-Addressing header information
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:wsn-b="http://docs.oasis-open.org/wsn/b-
2">
 <soap12:Header>
 <wsa:To>http://www.ogc.org/SPS/Producer</wsa:To>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeRequest</wsa:Action>
 <wsa:ReplyTo>
 <wsa:Address>http://my.client.com/client/myReceiver</wsa:Address>
 </wsa:ReplyTo>
 <wsa:MessageID>http://my.client.com/uid/msg-Sub1</wsa:MessageID>
 </soap12:Header>
 <soap12:Body>
 <wsn-b:Subscribe>
 <wsn-b:ConsumerReference>
 <wsa:Address>http://my.client.com/client/myNotificationConsumer</wsa:Address>
 </wsn-b:ConsumerReference>
 <wsn-b:Filter>
 <!-- omitted for brevity -->
 </wsn-b:Filter>
 </wsn-b:Subscribe>
 </soap12:Body>
</soap12:Envelope>

Note that the wsa:ReplyTo in the header only defines where the response to the Subscribe
request is to be sent to. The value of the wsn-b:ConsumerReference/wsa:Address element
(in the soap12:Body) defines where the notifications of events matching the subscription
are to be sent to. The following listing shows an example response for this request.

Listing 53 – SubscribeResponse example using WS-Addressing header information
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:wsn-b="http://docs.oasis-
open.org/wsn/b-2">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myReceiver</wsa:To>
 <wsa:Action>http://docs.oasis-open.org/wsn/bw-
2/NotificationProducer/SubscribeResponse</wsa:Action>
 <wsa:RelatesTo>http://my.client.com/uid/msg-Sub1</wsa:RelatesTo>
 </soap12:Header>
 <soap12:Body>
 <!-- as shown in Listing 46-->
 </soap12:Body>
</soap12:Envelope>

The exceptions shown in Listing 42 to Listing 44 would be modified as shown in Listing
54 to Listing 56. Note that the wsa:Action is different in the following listings as the
exceptions shown are defined by OWS Common, the SWE Service Model and the this
standard.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 175

Listing 54 – StatusInformationExpired exception with WS-Addressing header information
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myReceiver</wsa:To>
 <wsa:Action>http://www.opengis.net/sps/2.0/Exception</wsa:Action>
 <wsa:RelatesTo>http://my.client.com/uid/msg-0040</wsa:RelatesTo>
 </soap12:Header>
 <soap12:Body>
 <soap12:Fault>
 <soap12:Code>
 <soap12:Value>soap12:Receiver</soap12:Value>
 <soap12:Subcode>
 <soap12:Value>sps:StatusInformationExpired</soap12:Value>
 </soap12:Subcode>
 </soap12:Code>
 <!-- rest as shown in Listing 42-->
 </soap12:Fault>
 </soap12:Body>
</soap12:Envelope>

Listing 55 – InvalidRequest exception with WS-Addressing header information
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:swes="http://www.opengis.net/swes/2.0">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myReceiver</wsa:To>
 <wsa:Action>http://www.opengis.net/swes/2.0/Exception</wsa:Action>
 <wsa:RelatesTo>http://my.client.com/uid/msg-0030</wsa:RelatesTo>
 </soap12:Header>
 <soap12:Body>
 <soap12:Fault>
 <soap12:Code>
 <soap12:Value>soap12:Sender</soap12:Value>
 <soap12:Subcode>
 <soap12:Value>swes:InvalidRequest</soap12:Value>
 </soap12:Subcode>
 </soap12:Code>
 <!-- rest as shown in Listing 43-->
 </soap12:Body>
</soap12:Envelope>

OGC 09-000

176 Copyright © 2011 Open Geospatial Consortium

Listing 56 – InvalidParameterValue exception with WS-Addressing header information
<soap12:Envelope xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
xmlns:sps="http://www.opengis.net/sps/2.0"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ows="http://www.opengis.net/ows/1.1">
 <soap12:Header>
 <wsa:To>http://my.client.com/client/myReceiver</wsa:To>
 <wsa:Action>http://www.opengis.net/ows/1.1/Exception</wsa:Action>
 <wsa:RelatesTo>http://my.client.com/uid/msg-0020</wsa:RelatesTo>
 </soap12:Header>
 <soap12:Body>
 <soap12:Fault>
 <soap12:Code>
 <soap12:Value>soap12:Sender</soap12:Value>
 <soap12:Subcode>
 <soap12:Value>ows:InvalidParameterValue</soap12:Value>
 </soap12:Subcode>
 </soap12:Code>
 <!-- rest as shown in Listing 44-->
 </soap12:Body>
</soap12:Envelope>

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 177

10 SPS Task/Tasking Request State Machine Documentation

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Behaviour

REQ 115. Any SPS shall implement a behavior for handling tasks and
tasking requests as defined by the state machines described in
this clause 10.

Each state machine is documented with diagrams representing the state machine,
followed by a documentation of the states that are part of the state machine. For each
state, the incoming and outgoing connections are documented.

Finally, all triggers and the event that causes the activation of a trigger are documented.
A trigger may have a specific effect, which in the case of SPS is to notify interested
clients about the event (/Notify). A service that implements according notification
functionality – for SPS per default via a publish/subscribe interface – can inform clients
about these events; see clause 8 for further details.

10.1 Task State Machine

10.1.1 Diagrams

The following two diagrams define the state machine of an SPS task.

NOTE: Figure 32 is the same as Figure 9 and Figure 33 is only another representation of the state machine
shown in the two previous diagrams – so all three diagrams represent the same state machine.

OGC 09-000

178 Co

Figure 32 — task state machine diagram

An introduction to the state machine depicted in Figure 32 is provided in clause 6.3.6 and
thus is not repeated here. The full documentation of the state machine is given in the
following clauses.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Co

Figure 33 — task state machine diagram – tabular representation

10.1.2 States/Choices

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Tasks/StateTransitions

REQ 116. Any SPS shall implement state transitions as defined in Table
70, Table 71, Table 72, Table 73, Table 74, and Table 75.

pyright © 2011 Open Geospatial Consortium 179

OGC 09-000

180 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Tasks/Notifications

REQ 117. Any SPS shall send notifications as defined in Table 70, Table
71, Table 72, Table 73, Table 74, and Table 75.

10.1.2.1 Scheduled State

Any feasible tasking request with the intention to reserve or submit a task gets accepted
by the service (otherwise the request would be not feasible) and added to the schedule of
the server.

A task that is scheduled by the service can transition through different substates before it
reaches the final state.

A client may cancel a task at any time if the Cancel operation is supported by the service.
A task can also fail due to unforeseen circumstances that are in the responsibility of the
service provider.

The natural way for a scheduled task to be finalized is that it either expires (in case the
task was only reserved) or that it is completed as planned.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 181

Table 70 — Connections of the Scheduled state
Connector
(type & name)

Source
(state)

Target
(state)

Notes

Transition
TaskCancellation

Scheduled

Final State

If supported by the service, a client may
cancel a scheduled task.

A service may reject a cancellation
request.

Data gathered and published for such a
task should not automatically be deleted
so that a client can at least retrieve the
data that was gathered until the task was
cancelled.

If supported, the service shall notify
interested consumers about this event.

Transition
TaskFailure

Scheduled

Final State

If the service is not able to perform a
scheduled task as planned, the task fails.

If supported, the service shall notify
interested consumers about this event.

10.1.2.2 InExecution State

A task that enters this state is executed by the service. The service starts the internal
processing of the request.

OGC 09-000

182 Copyright © 2011 Open Geospatial Consortium

Table 71 — Connections of the InExecution state
Connector
(type & name)

Source
(state)

Target
(state)

Notes

Transition
TaskCompletion

InExecution Final State If a task is completed as planned, it is
finalized.

If supported, the service shall notify
interested consumers about this event.

Transition
ExecutingTaskU
pdate

InExecution InExecution If a tasking request to update a task that
is in the state InExecution is feasible, the
update shall be performed and the task
shall remain (or transition back) into
InExecution state.

Whether the update results in the
transition to the previous substate of
InExecution or in the transition to a new
substate is not further specified here.
This behavior can be specified by an
SPS extension/profile that defines new
substates of InExecution.

If supported, the service shall notify
interested consumers about this event.

Transition
DataPublication

InExecution InExecution New data was gathered for the task and
published by the service - meaning that a
client can now access the new data.

If supported, the service shall notify
interested consumers about this event.

Transition
TaskConfirmatio
n

Reserved InExecution A reserved task that is confirmed by the
client shall transition into InExecution
state.

If supported, the service shall notify
interested consumers about this event.

Transition
TaskSubmission

Tasking
Request
Choice

InExecution A feasible tasking request with the
intention to submit a task enters
InExecution state.

Note: a service can support notification that a
task was submitted by implementing the
TaskingRequestAccepted event (see Table 64).

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 183

10.1.2.3 Reserved State

This state represents a task that has successfully been reserved at the service. The service
blocks all resources required to execute the task as long as the reservation has not
expired.

The reserved task may be updated if the update is feasible - if it is not feasible the task
does not change its state.

If a successful confirmation of the reserved task can no longer be guaranteed, the task
fails.

Table 72 — Connections of the Reserved state
Connector
(type & name)

Source
(state)

Target
(state)

Notes

Transition
TaskReservation

Tasking
Request
Choice

Reserved A feasible tasking request with the
intention to reserve a task enters the
Reserved state.

Note: a service can support notification that a
task was reserved by implementing the
TaskingRequestAccepted event (see Table 64).

Transition
ReservedTaskUpd
ate

Reserved Reserved If a tasking request to update a reserved
task is feasible, the update shall be
performed and the task shall remain (or
transition back) in Reserved state.

If supported, the service shall notify
interested consumers about this event.

Transition
ReservationExpira
tion

Reserved Final State If a reserved task expired, it shall be
finalized by the service.

If supported, the service shall notify
interested consumers about this event.

Transition
TaskConfirmation

Reserved InExecution A reserved task that is confirmed by the
client shall transition into InExecution
state.

If supported, the service shall notify
interested consumers about this event.

10.1.2.4 Tasking Request Choice

Which substate of the Scheduled state is entered by a new task depends on the semantics
of the tasking request. If the tasking request was sent with the intention to reserve a task

OGC 09-000

184 Copyright © 2011 Open Geospatial Consortium

then the substate will be Reserved. If the intention was to submit a task then the substate
will be InExecution.

Table 73 — Connections of the Tasking Request choice
Connector
(type & name)

Source
(state)

Target
(state)

Notes

Transition
TaskReservation

Tasking
Request
Choice

Reserved A feasible tasking request with the
intention to reserve a task enters the
Reserved state.

Note: a service can support notification that a
task was reserved by implementing the
TaskingRequestAccepted event (see Table 64).

Transition
TaskSubmission

Tasking
Request
Choice

InExecutio
n

A feasible tasking request with the
intention to submit a task enters the
InExecution state.

Note: a service can support notification that a
task was submitted by implementing the
TaskingRequestAccepted event (see Table 64).

Transition
TaskReservationO
rSubmission

Initial State Tasking
Request
Choice

A feasible tasking request with the
intention to reserve or submit an implied
task automatically enters the Scheduled
state.

10.1.2.5 Final State

A task that was completed, has expired, was cancelled or has failed is in its final state.

The service does not allow any confirmation, update or cancellation of a finalized task.
An exception (with ModificationOfFinalizedTask code) will be thrown if one of these
requests is received for a finalized task. An InvalidParameterValue exception is thrown if
the task identifier in the request is unknown to the service.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 185

Table 74 — Connections of the Final state
Connector
(type & name)

Source
(state)

Target
(state)

Notes

Transition
TaskCancellation

Scheduled Final
State

If supported by the service, a client may
cancel a scheduled task.

A service may reject a cancellation request.

Data gathered and published for such a task
should not automatically be deleted so that a
client can at least retrieve the data that was
gathered until the task was cancelled.

If supported, the service shall notify
interested consumers about this event.

Transition
TaskCompletion

InExecution Final
State

If a task is completed as planned, it is
finalized.

If supported, the service shall notify
interested consumers about this event.

Transition
ReservationExpira
tion

Reserved Final
State

If a reserved task expired, it shall be
finalized by the service.

If supported, the service shall notify
interested consumers about this event.

Transition
TaskFailure

Scheduled Final
State

If the service is not able to perform a
scheduled task as planned, the task shall
fail.

If supported, the service shall notify
interested consumers about this event.

10.1.2.6 Initial State

Once a tasking request with the intention to reserve or submit is received by the service
and the implied task is feasible, a task gets scheduled by the service.

OGC 09-000

186 Copyright © 2011 Open Geospatial Consortium

Table 75 — Connections of the Initial state
Connector
(type & name)

Source
(state)

Target
(state)

Notes

Transition
TaskReservationO
rSubmission

Initial State Tasking
Request
Choice

A feasible tasking request with the
intention to reserve or submit an implied
task automatically enters the Scheduled
state.

10.1.3 Events/Trigger

Requirement

http://www.opengis.net/spec/SPS/2.0/req/Tasks/Events

REQ 118. If an SPS server supports event notification, events shall be sent
as defined in clauses 10.1.3.1 to 10.1.3.9.

10.1.3.1 DataPublished

New data was published for a task that is InExecution.

If supported by the service, this causes a notification of the event.

10.1.3.2 ReservationExpired

A reserved task has expired (the expiration time set by the service is before now - "now"
being the time measured by the service).

If supported by the service, this causes a notification of the event.

10.1.3.3 TaskCancelled

A scheduled task has been cancelled.

Data gathered and published for the cancelled task should not automatically be deleted so
that a client can retrieve the data that was gathered until the task was cancelled.

If supported by the service, this causes a notification of the event.

10.1.3.4 TaskCompleted

A task that was InExecution was completed as planned.

Implies that all data gathered in the task has been published.

If supported by the service, this causes a notification of the event.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 187

10.1.3.5 TaskConfirmed

A reserved task was confirmed.

If supported by the service, this causes a notification of the event.

10.1.3.6 TaskFailed

A scheduled task has failed.

Data gathered and published for the failed task should not automatically be deleted so
that a client can at least retrieve the data that was gathered until the task failed.

If supported by the service, this causes a notification of the event.

10.1.3.7 TaskReserved

A task was reserved.

Note: a service can support notification that a task was reserved by implementing the
TaskingRequestAccepted event (see Table 64).

10.1.3.8 TaskSubmitted

A task was submitted.

Note: a service can support notification that a task was reserved by implementing the
TaskingRequestAccepted event (see Table 64).

10.1.3.9 TaskUpdated

A task was updated.

If supported by the service, this causes a notification of the event.

10.2 Tasking Request State Machine

10.2.1 Diagrams

The following diagram defines the state machine of an SPS tasking request.

NOTE: Figure 34 is the same as Figure 8

OGC 09-000

188 Co

Figure 34 — tasking request state machine diagram

An introduction to the state machine depicted in Figure 34 is provided in clause 6.3.6 and
thus is not repeated here. The full documentation of the state machine is given in the
following clauses.

10.2.2 States/Choices

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequests/StateTransitions

REQ 119. Any SPS shall implement state transitions as defined in Table
76 to Table 81.

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequests/Notifications

REQ 120. Any SPS shall send notifications as defined in Table 76 to Table
81.

10.2.2.1 Pending State

A tasking request of which the feasibility cannot be determined immediately enters
Pending state.

pyright © 2011 Open Geospatial Consortium

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 189

The tasking request will remain in this state until the feasibility was determined or until
the latest response time - if set in the tasking request or initial response to inform the
client about the pending state - is reached.

Table 76 — Connections of the Pending state
Connector
(type)

Source
(state)

Target
(state)

Notes

Transition Pending Rejected If the latest response time was set by the client or
service for a tasking request and this point in time
has been reached, the tasking request automatically
transitions into the Rejected state.

If supported, the service shall notify interested
consumers about this event.

Transition ChoiceA Pending If the service cannot determine the feasibility of a
tasking request in a reasonable amount of time, the
request transitions into the Pending state.

If supported, the service shall notify interested
consumers about this event.

Transition Pending ChoiceB If the service can provide a final decision on the
feasibility of a pending tasking request, the request
transitions on to the final decision point.

10.2.2.2 Accepted State

If the service determines that the tasking request is feasible, the request is in the final
state Accepted.

If the tasking request had the intention to reserve or submit a task, then a task is
scheduled by the service.

If the tasking request had the intention to update a reserved or currently executed task, the
update is performed to the task.

OGC 09-000

190 Copyright © 2011 Open Geospatial Consortium

Table 77 — Connections of the Accepted state
Connector
(type)

Source
(state)

Target
(state)

Notes

Transition ChoiceB Accepted If the tasking request is feasible, it transitions on to
the final state Accepted.

If supported, the service shall notify interested
consumers about this event.

10.2.2.3 ChoiceA

When receiving a tasking request, the service has to determine the feasibility of a tasking
request within a reasonable amount of time. A 'reasonable time' should be a duration that
is well below any timeout of the transport protocol used for the communication.

Table 78 — Connections of the ChoiceA choice
Connector
(type)

Source
(state)

Target
(state)

Notes

Transition ChoiceA Pending If the service cannot determine the feasibility of a
tasking request in a reasonable amount of time, the
request transitions into the Pending state.

If supported, the service shall notify interested
consumers about this event.

Transition ChoiceA ChoiceB If the service can determine the feasibility of a
tasking request in a reasonable amount of time, the
request transitions on to the final decision point.

Transition Initial
State

ChoiceA A tasking request automatically reaches the choice
where the service decides whether the feasibility of
the tasking request can be determined in a
reasonable time or not.

10.2.2.4 ChoiceB

Here the service makes his decision whether the request is feasible or not.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 191

Table 79 — Connections of the ChoiceB choice
Connector
(type)

Source
(state)

Target
(state)

Notes

Transition ChoiceA ChoiceB If the service can determine the feasibility of a
tasking request in a reasonable amount of time, the
request transitions on to the final decision point.

Transition Pending ChoiceB If the service can provide a final decision on the
feasibility of a pending tasking request, the request
transitions on to the final decision point.

Transition ChoiceB Accepted If the tasking request is feasible, it transitions on to
the final state Accepted.

If supported, the service shall notify interested
consumers about this event.

Transition ChoiceB Rejected If the tasking request is not feasible, it transitions
on to the final state Rejected.

If supported, the service shall notify interested
consumers about this event.

10.2.2.5 Initial State

A tasking request is sent to the SPS (GetFeasibility, Reserve, Submit, Update).

Table 80 — Connections of the Initial state
Connector
(type)

Source
(state)

Target
(state)

Notes

Transition Initial State ChoiceA A tasking request automatically reaches the
choice where the service decides whether the
feasibility of the tasking request can be
determined in a reasonable time or not.

10.2.2.6 Rejected (Final) State

If the service determines that the tasking request is not feasible, the request is in the final
state Rejected.

If the tasking request had the intention to reserve or submit a task, then no task is
scheduled by the service.

OGC 09-000

192 Copyright © 2011 Open Geospatial Consortium

If the tasking request had the intention to update a reserved or currently executed task, the
update is not performed.

A service may provide alternative sets of tasking parameters that the client can use to
formulate another tasking request.

Table 81 — Connections of the Rejected state
Connector
(type)

Source
(state)

Target
(state)

Notes

Transition Pending Rejected If the latest response time was set by the client or
service for a tasking request and this point in time
has been reached (the current time being after the
latest response time), the tasking request
automatically transitions into the Rejected state.

If supported, the service shall notify interested
consumers about this event.

Transition ChoiceB Rejected If the tasking request is not feasible, it transitions on
to the final state Rejected.

If supported, the service shall notify interested
consumers about this event.

10.2.3 Events/Trigger

Requirement

http://www.opengis.net/spec/SPS/2.0/req/TaskingRequests/EventsTrigger

REQ 121. If an SPS server supports event notification, events shall be sent
as defined in clauses 10.2.3.1 to 10.2.3.3.

10.2.3.1 TaskingRequestAccepted

A tasking request has been accepted.

If supported by the service, this causes a notification of the event.

10.2.3.2 TaskingRequestExpired

A pending tasking request has expired.

If supported by the service, this causes a notification of the event.

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 193

10.2.3.3 TaskingRequestRejected

A tasking request has been rejected.

If supported by the service, this causes a notification of the event.

10.2.3.4 TaskingRequestPending

A tasking request is pending.

If supported by the service, this causes a notification of the event.

OGC 09-000

194 Copyright © 2011 Open Geospatial Consortium

11 Annex A – Abstract Test Suite and Conformance Testing (normative)

Specific conformance tests for a Sensor Planning Service need to be defined on the
concrete service level in order to ensure full interoperability. Thus, the abstract test suite
defined herein only ensures general interoperability between client and server.
An SPS implementation shall satisfy the following system characteristics to be minimally
conformant with this specification:

11.1 Conformance Class – Core

http://www.opengis.net/spec/SPS/2.0/conf/Core

11.1.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/Core/Capability

a) Test Purpose: Verify that the server implements the Core conformance class.

b) Test Method: Verify that the server implements the following conformance
classes: http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-encodings,
http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-components,
http://www.opengis.net/spec/SWES/2.0/conf/BasicSWEServiceMetadata,
http://www.opengis.net/spec/SWES/2.0/conf/SensorProvider. Verify the
conformance tests listed in section 11.1.2

c) Reference:see references in conformance tests

d) Test Type: Capability

11.1.2 Modules with Basic Tests

11.1.2.1 Common Request Response Handling

11.1.2.1.1 Invalid version number

http://www.opengis.net/spec/SPS/2.0/conf/Core/RequestResponse/InvalidVersionNumber

a) Test Purpose: To verify that a request, other than a GetCapabilities request, with
the version number set to one that the server does not claim to support in its
capabilities document fails.

b) Test Method: Review the response to the GetCapabilites request and determine
which request version(s) the server claims to support. Execute one or more SPS
requests with a version that is not in the list of supported version and verify that
the server generates an InvalidParameterValue exception.

c) Reference: conformance test A.4.2.3 in OGC 06-121r3

http://www.opengis.net/spec/SPS/2.0/conf/Core
http://www.opengis.net/spec/SPS/2.0/conf/Core/Capability
http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-encodings
http://www.opengis.net/spec/SWE/2.0/conf/uml-simple-components
http://www.opengis.net/spec/SWES/2.0/conf/BasicSWEServiceMetadata
http://www.opengis.net/spec/SWES/2.0/conf/SensorProvider
http://www.opengis.net/spec/SPS/2.0/conf/Core/RequestResponse/InvalidVersionNumber

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 195

d) Test Type: Basic

11.1.2.1.2 Service and version appropriateness

http://www.opengis.net/spec/SPS/2.0/conf/Core/RequestResponse/ServiceAndVersion

a) Test Purpose: To verify that the server recognizes correct values for service and
version parameters in operation request other than GetCapabilities.

b) Test Method: Devise and execute a request with correct value ("SPS") for the
service (type) request parameter and another request with correct value for the
version parameter ("2.0.0"). Verify that the service does not throw an
InvalidParameterValue exception with locator version "service" or "version".

c) Reference: Subclause of chapter 7 according to the given operation.

d) Test Type: Basic

11.1.2.2 Exception Reporting

11.1.2.2.1 Exception Appropriateness

http://www.opengis.net/spec/SPS/2.0/conf/Core/ExceptionReporting/Appropriateness

a) Test Purpose: Verify that the server generates an appropriate exception by setting
the value of the code and locator parameters to an appropriate value.

Test Method: Devise a series of requests that generate an error for each applicable error
code used in

b) Figure 12. Verify that server generates an appropriate exception for each case by
verifying that the code and locator parameters have been set to the correct value.

c) Reference: 7.2

d) Test Type: Basic

11.1.2.2.2 Exception Model Compliancy

http://www.opengis.net/spec/SPS/2.0/conf/Core/ExceptionReporting/ModelCompliancy

a) Test Purpose: To verify that the exceptions the server generates validate
according to the schema defined in Clause 8 of 06-121r3.

b) Test Method: Devise and execute a request that generates an error. Verify that the
exception that the server generates is valid.

c) Reference: 7.2

d) Test Type: Basic

http://www.opengis.net/spec/SPS/2.0/conf/Core/RequestResponse/ServiceAndVersion
http://www.opengis.net/spec/SPS/2.0/conf/Core/ExceptionReporting/Appropriateness
http://www.opengis.net/spec/SPS/2.0/conf/Core/ExceptionReporting/ModelCompliancy

OGC 09-000

196 Copyright © 2011 Open Geospatial Consortium

11.1.2.3 Service Metadata

11.1.2.3.1 Adherence to property inheritance mechanism

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/PropertyInheritanceAdherence

a) Test Purpose: To verify that the service adheres to the rules of property
inheritance.

b) Test Method: Devise and execute requests that test each of the values for the
procedure and procedure description format properties that an offering has when
applying the property inheritance mechanism as defined in OGC 09-001 and
Table 27.

c) Reference: 7.3.3.4, OGC 09-001, Table 27

d) Test Type: Basic

11.1.2.3.2 Default Service Version

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/DefaultServiceVersion

a) Test Purpose: To verify that the service supports retrieval of Capabilities in
version 2.0.0.

b) Test Method: Devise a GetCapabilities request with acceptVersions parameter set
to value “2.0.0” and send it to the service. Verify that the service property in the
resulting capabilities document has the value "2.0.0".

c) Reference: 7.3.2.4

d) Test Type: Basic

11.1.2.3.3 GetCapabilities operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/GetCapabilitiesFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
GetCapabilities operation is invoked.

b) Test Method: Devise and execute a GetCapabilities request. Verify that the
service responds with a valid capabilities document or exception.

c) Reference: 7.3.2.3, 7.3.2.4

d) Test Type: Basic

11.1.2.3.4 Indicate support of SWE Common Encodings

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/SWECommonEncodings

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/PropertyInheritanceAdherence
http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/DefaultServiceVersion
http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/GetCapabilitiesFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/SWECommonEncodings

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 197

a) Test Purpose: Verify that the service advertises which SWE Common encodings
it supports.

b) Test Method: Devise a GetCapabilities request to retrieve the full capabilities
document of the service and send it to the service. Get the list of supported SWE
Common encodings from the contents section. Verify that the conformance
classes for these encodings are listed in the "profile" property of the
serviceIdentification section. Ensure that at least the URIs for the "Simple
Encodings UML Package" conformance class from the SWE Common Data
Model is listed.

c) Reference: 7.3.3.3

d) Test Type: Basic

11.1.2.3.5 Indicate support of SWE Common Structures

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/SWECommonStructures

a) Test Purpose: Verify that the service advertises which SWE Common structures it
supports.

b) Test Method: Devise a GetCapabilities request to retrieve the serviceIdentification
section of the service's capabilities document and send it to the service. Get the
list of supported conformance classes. Verify that at least the URI for the "Basic
Types and Simple Components UML Package" conformance class from the SWE
Common Data Model is listed there.

c) Reference: 7.3.3.3

d) Test Type: Basic

11.1.2.3.6 Listing of supported conformance classes

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/ConformanceClassListing

a) Test Purpose: Verify that a service lists all the conformance classes it supports in
its metadata.

b) Test Method: Execute a GetCapabilities request to retrieve the
serviceIdentification section. Verify that the service passes all tests associated to
the conformance classes that are listed in the profile property of this section.

c) Reference: 7.3.2.4.6

d) Test Type: Basic

11.1.2.3.7 Mandatory Operations

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/MandatoryOperations

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/SWECommonStructures
http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/ConformanceClassListing
http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/MandatoryOperations

OGC 09-000

198 Copyright © 2011 Open Geospatial Consortium

a) Test Purpose: Verify that all mandatory SPS operations are supported by the
service.

b) Test Method: Execute a GetCapabilities request to retrieve the
operationsMetadata section. Verify that the mandatory operations according to
Table 22 are listed there. Execute further GetCapabilities as well as
DescribeSensor, DescribeResultAccess, DescribeTasking, GetStatus, GetTask and
Submit requests. Verify that the server sends appropriate responses as defined in
this specification.

c) Reference: 7.3.2, 7.3.4, 7.3.5, 7.3.6, 7.3.7, 7.3.8 and OGC 09-001

d) Test Type: Basic

11.1.2.3.8 Minimum section set

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/MinimumSectionSet

a) Test Purpose: Verify that the service supports at least the serviceProvider,
serviceIdentification, operationsMetadata and contents sections.

b) Test Method: Create a GetCapabilities request to get the full capabilities
document and check that it contains the according sections.

c) Reference: 7.3.2

d) Test Type: Basic

11.1.2.3.9 Number of property values for sensor offering

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/SensorOfferingPropertyValues

a) Test Purpose: To verify that the server has the correct number of values for the
properties contained in the SensorOffering in each of its offerings listed in its
contents section.

b) Test Method: Devise and execute a GetCapabilities request that requests the
contents section. Verify that the number of values for the procedure, procedure
description format, observable property, related feature and observable area
properties in each offering after applying the property inheritance mechanism (see
OGC 09-001) are as defined in Table 27.

c) Reference: 7.3.3.3, OGC 09-001, Table 27

d) Test Type: Basic

11.1.2.3.10Version negotiation for the GetCapabilities request

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/VersionNegotiation

http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/MinimumSectionSet
http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/SensorOfferingPropertyValues
http://www.opengis.net/spec/SPS/2.0/conf/Core/ServiceMetadata/VersionNegotiation

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 199

a) Test Purpose: To verify that the server correctly handles version negotiation for
the GetCapabilities operation.

b) Test Method: Verify that the server conforms to the test described in 06-121r3.

c) Reference: A.4.2.3 of 06-121r3

d) Test Type: Basic

11.1.2.4 DescribeTasking

11.1.2.4.1 DescribeTasking operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/Core/DescribeTasking/OperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
DescribeTasking operation is invoked.

b) Test Method: Devise and execute a DescribeTasking request. Verify that the
service responds with a valid DescribeTaskingResponse or exception.

c) Reference: 7.3.4

d) Test Type: Basic

11.1.2.4.2 Provide name for tasking parameter component

http://www.opengis.net/spec/SPS/2.0/conf/Core/DescribeTasking/TaskingParameterNames

a) Test Purpose: To verify that the service provides required name attributes for and
in the tasking parameter description.

b) Test Method: Devise and execute a DescribeTasking request for each procedure
hosted by the service. Verify that the taskingParameter description in the
DescribeTaskingResponse has a properly populated name attribute and also that
all SWE Common components eventually contained in the parameter description
has such a name attribute.

c) Reference: 7.3.4.4

d) Test Type: Basic

11.1.2.4.3 Tasking Parameter Description Model Validity

http://www.opengis.net/spec/SPS/2.0/conf/Core/DescribeTasking/TaskingParameterModelValidity

a) Test Purpose: To verify that the service uses only those SWE Common Data
structures that it indicates support for and that these are valid.

http://www.opengis.net/spec/SPS/2.0/conf/Core/DescribeTasking/OperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/Core/DescribeTasking/TaskingParameterNames
http://www.opengis.net/spec/SPS/2.0/conf/Core/DescribeTasking/TaskingParameterModelValidity

OGC 09-000

200 Copyright © 2011 Open Geospatial Consortium

b) Test Method: Devise and execute a DescribeTasking request for each procedure
hosted by the service. Verify that the taskingParameter description in the
DescribeTaskingResponse uses a SWE Common AbstractDataComponent
subtype that is covered by one of the SWE Common conformance classes listed in
the service's capabilities document. Ensure that this component passes the tests
defined in all conformance classes of the SWE Common Data Model standard
listed in the service's capabilities document.

c) Reference: 7.3.4

d) Test Type: Basic

11.1.2.5 Tasking

11.1.2.5.1 Tasking Parameter Usage

http://www.opengis.net/spec/SPS/2.0/conf/Core/Tasking/TaskingParameterUsage

a) Test Purpose: Verify that the service supports the SWE Common encodings as
advertised in its capabilities.

b) Test Method: Devise a GetCapabilities request to retrieve the contents section of
the service's capabilities document and send it to the service. Get the list of
supported SWE Common encodings from the contents section.

Devise a valid tasking request (Submit and - if implemented - Reserve, Update,
GetFeasibility) with tasking parameter values structured according to the tasking
parameter description retrieved via the DescribeTasking operation for the tasked
procedure and encoded according to an encoding indicated in the tasking request
and supported by the service. Send this tasking request to the service. Verify that
the service does not return an InvalidParameterValue exception with locator
"taskingParameters".

Similarly, devise a tasking request with invalid tasking parameters (not following
the structure defined in the DescribeTasking response, not using an encoding
supported by the service or not encoding the values correctly) and send it to the
service. Ensure that the service throws an InvalidParameterValue exception with
locator "taskingParameters".

c) Reference: 7.2

d) Test Type: Basic

11.1.2.5.2 Tasking request expiration

http://www.opengis.net/spec/SPS/2.0/conf/Core/Tasking/TaskingRequestExpiration

a) Test Purpose: To verify that the service correctly handles tasking request
expiration.

http://www.opengis.net/spec/SPS/2.0/conf/Core/Tasking/TaskingParameterUsage
http://www.opengis.net/spec/SPS/2.0/conf/Core/Tasking/TaskingRequestExpiration

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 201

b) Test Method: Given a tasking response that has requestStatus "Pending" and
defines a latestResponseTime: devise and execute a GetStatus request for the
request and send it to the service shortly before the latestResponseTime. If the
requestStatus is still "Pending" send another GetStatus request shortly after the
latestResponseTime. Verify that the requestStatus in the latest status report is
either "Accepted" or "Rejected". If it is "Rejected", check the updateTime of the
according status report. If the updateTime is before the latestResponseTime,
ensure that the event is not "TaskingRequestExpired". Otherwise ensure that the
updateTime value is the same time as the latestResponseTime and that the event
is "TaskingRequestExpired".

c) Reference: 7.3.1.3, 7.3.1.4

d) Test Type: Basic

11.1.2.6 State Handling

11.1.2.6.1 GetStatus operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/GetStatusOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
GetStatus operation is invoked.

b) Test Method: Devise and execute a GetStatus request. Verify that the service
responds with a valid GetStatusResponse or exception.

c) Reference: 7.3.6

d) Test Type: Basic

11.1.2.6.2 GetTask operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/GetTaskOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
GetTask operation is invoked.

b) Test Method: Devise and execute a GetTask request. Verify that the service
responds with a valid GetTaskResponse or exception.

c) Reference: 7.3.7

d) Test Type: Basic

11.1.2.6.3 Handling requests for already deleted status information

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/HandlingRequestsForDeletedStatusInfo

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/GetStatusOperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/GetTaskOperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/HandlingRequestsForDeletedStatusInfo

OGC 09-000

202 Copyright © 2011 Open Geospatial Consortium

a) Test Purpose: Verify that the service correctly handles GetStatus / GetTask
requests that ask for status information of a task / tasking request but that
information has already been discarded by the service.

b) Test Method: Devise a GetStatus / GetTask request for a task that was completed
by the service and execute it after the minStatusTime has expired. Verify that the
service either sends an exception with code StatusInformationExpired (in case it
still knows the task but does no longer store status information for it) or an
exception with code InvalidParameterValue (in case that the service already
removed all information on that task and thus does no longer “know” it) with
locator "task".

c) Reference: 7.3.6.5, 7.3.7.5

d) Test Type: Basic

11.1.2.6.4 State handling

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/ValidStateMachineImplementation

a) Test Purpose: Verify that the service correctly implements the state machines
defined for tasking requests / tasks.

b) Test Method: Devise a valid tasking request and send it to the service. Create
valid GetTask / GetStatus requests for the according tasks / tasking requests and
send them to the service. Inspect the response to verify that no illegal transition
for the tasking request / task is made.

c) Reference: 10, 7.3.1.5, 7.3.6, 7.3.7

d) Test Type: Basic

11.1.2.6.5 State information storage

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/StateInfoStorage

a) Test Purpose: Verify that the service provides the information about the latest
state transition of finalized tasks / tasking requests as long as indicated in its
service metadata.

b) Test Method: Devise a valid request for all the tasking operations supported by
the service (Submit, GetFeasibility, Update, Reserve). Send those to the service.

Create valid GetTask / GetStatus requests for the according tasks / tasking
requests when they were finalized. Send them to the service shortly before the
point in time that is defined by the updateTime of the status report that
documented the transition into the final state plus the "minStatusTime" duration
that is stated in the contents section of the service's capabilities document. Verify

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/ValidStateMachineImplementation
http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/StateInfoStorage

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 203

that each response contains information on the latest state transition made by the
request / task.

c) Reference: 7.3.3.3

d) Test Type: Basic

11.1.2.6.6 State provisioning

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/StateProvisioning

a) Test Purpose: Verify that the service provides information about the latest state of
all tasks / tasking requests.

b) Test Method: Devise a valid request for all the tasking operations supported by
the service (Submit, GetFeasibility, Update, Reserve). Send those requests to the
service.

Create valid GetTask / GetStatus requests for the according tasks / tasking
requests and send them to the service. Verify that each response contains
information on the latest state transitions made by the request / task so far.

c) Reference: 7.3.6, 7.3.7

d) Test Type: Basic

11.1.2.6.7 StatusReport Usage in GetStatusResponse

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/ReportUsageInGetStatusResponse

a) Test Purpose: To verify that the service correctly provides status information in a
GetStatusResponse.

Test Method: Devise and execute a valid GetStatus request for a task / tasking request that was
sent to the service previously that has not been finalized too long ago so that the service already
discarded status information on that task / tasking request. Verify that the result property of the
GetStatusResponse contains a StatusReport as defined in Table 34,

b) Table 35, Table 36 and Table 37 - depending upon the nature of the actual task /
tasking request.

c) Reference: 7.3.6.4

d) Test Type: Basic

11.1.2.6.8 StatusReport Usage in GetTaskResponse

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/ReportUsageInGetTaskResponse

a) Test Purpose: To verify that the service correctly provides status information in a
GetTaskResponse.

http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/StateProvisioning
http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/ReportUsageInGetStatusResponse
http://www.opengis.net/spec/SPS/2.0/conf/Core/StateHandling/ReportUsageInGetTaskResponse

OGC 09-000

204 Copyright © 2011 Open Geospatial Consortium

Test Method: Devise and execute a valid GetTask request for a task / tasking request that was
sent to the service previously that has not been finalized too long ago so that the service already
discarded status information on that task / tasking request. Verify that each task in the
GetTaskResponse contains StatusReports as defined in Table 34,

b) Table 35, Table 36 and Table 37 - depending upon the nature of the actual task /
tasking request.

c) Reference: 7.3.7.4

d) Test Type: Basic

11.1.2.7 Submit

11.1.2.7.1 StatusReport Usage in SubmitResponse

http://www.opengis.net/spec/SPS/2.0/conf/Core/Submit/ReportUsageInSubmitResponse

a) Test Purpose: To verify that the service correctly provides status information in a
SubmitResponse.

b) Test Method: Devise and execute a valid Submit request. Verify that the result
property of the SubmitResponse contains a StatusReport as defined in Table 31.

c) Reference: 7.3.5.4

d) Test Type: Basic

11.1.2.7.2 Submit operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/Core/Submit/OperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
Submit operation is invoked.

b) Test Method: Devise and execute a Submit request. Verify that the service
responds with a valid SubmitResponse or exception.

c) Reference: 7.3.5

d) Test Type: Basic

11.1.2.7.3 Successful task submission

http://www.opengis.net/spec/SPS/2.0/conf/Core/Submit/SuccessfulTaskSubmission

a) Test Purpose: To verify that the service schedules a task if a Submit request is
feasible.

b) Test Method: Devise and execute a valid Submit request. Verify via the GetStatus
/ GetTask operation that a task was scheduled with the same task identifier that

http://www.opengis.net/spec/SPS/2.0/conf/Core/Submit/ReportUsageInSubmitResponse
http://www.opengis.net/spec/SPS/2.0/conf/Core/Submit/OperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/Core/Submit/SuccessfulTaskSubmission

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 205

was provided in the SubmitResponse. To do this, verify that the latest status of
that task makes correct use of the taskStatus property.

c) Reference: 7.3.5, 7.3.1.5

d) Test Type: Basic

11.1.2.8 Result Handling

11.1.2.8.1 DescribeResultAccess operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/DescribeResultAccessOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
DescribeResultAccess operation is invoked.

b) Test Method: Devise and execute a DescribeResultAccess request. Verify that the
service responds with a valid DescribeResultAccessResponse or exception.

c) Reference: 7.3.8

d) Test Type: Basic

11.1.2.8.2 Handling of data unavailability

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/HandlingDataUnavailability

a) Test Purpose: To verify that the service handles data unavailability correctly.

b) Test Method: Devise and execute a DescribeResultAccess request for a tasking
request that was just accepted. Ensure that the request is made before the task is
completed and before it made a DataPublished transition. Verify that the response
contains the unavailableCode "DataNotAvailable".

c) Reference: 7.3.8.1

d) Test Type: Basic

11.1.2.8.3 Identifiers for references and reference groups

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ReferenceAndGroupIdentifiers

a) Test Purpose: To verify that the service assigns identifiers to reference groups and
references and that these do not change for as long as the given reference (group)
exists.

b) Test Method: Devise and execute DescribeResultAccess requests for an accepted
task. When a response indicates that data is available, verify that each reference
group and the reference(s) it contains have a unique identifier value. Verify that
consecutive responses do not contain a reference (group) that has the exact same

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/DescribeResultAccessOperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/HandlingDataUnavailability
http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ReferenceAndGroupIdentifiers

OGC 09-000

206 Copyright © 2011 Open Geospatial Consortium

property values as a reference (group) in a previous response but which has a
different identifier.

c) Reference: 7.3.8.7

d) Test Type: Basic

11.1.2.8.4 Incremental data publication

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/IncrementalDataPublication

a) Test Purpose: To verify that the service provides new references when it
published new data while a task is in execution.

b) Test Method: If publish / subscribe functionality is supported by the service,
subscribe for DataPublished events. Submit a task that is going to be executed by
the service. When the submit request was accepted, devise and execute a
DescribeResultAccess request for that task. Whenever a DataPublished event for
the task was published, execute another DescribeResultAccess request. Compare
the references contained in that response with those of the previous response.
Verify that new references have been added by checking for references with new
identifier values.

c) Reference: 7.3.8.1

d) Test Type: Basic

11.1.2.8.5 Referencing general data services for procedure

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ReferencingDataServicesForProcedure

a) Test Purpose: To verify that the service provides references to possible data
storage locations / services when DescribeResultAccess with procedure identifier
was made.

b) Test Method: Devise and execute a DescribeResultAccess request. Verify that the
references contained in the response are references to folders / services (as
defined in Table 40 and Table 41).

c) Reference: 7.3.8.1

d) Test Type: Basic

11.1.2.8.6 Referencing task data

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ReferencingTaskData

a) Test Purpose: To verify that the service provides references to the data gathered
for a task when DescribeResultAccess with task identifier was made.

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/IncrementalDataPublication
http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ReferencingDataServicesForProcedure
http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ReferencingTaskData

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 207

b) Test Method: Devise and execute a DescribeResultAccess request. Verify that the
references contained in the response are references as defined in Table 41.

c) Reference: 7.3.8.1

d) Test Type: Basic

11.1.2.8.7 Result access information storage

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ResultAccessInfoStorage

a) Test Purpose: Verify that the service provides result access information for a task
that was in execution at least as long as indicated in its service metadata.

b) Test Method: Submit a task that reaches the InExcecution state.

c) Create a valid DescribeResultAccess requests for the according task. When the
task was finalized, send the request to the service shortly before the point in time
that is defined by the updateTime of the status report that documented the
transition into the final state plus the "minStatusTime" duration that is stated in
the contents section of the service's capabilities document. Verify that the
response contains at least one reference group with references or has the
unavailableCode "DataServiceUnavailable".

d) Reference: 7.3.8.1, 7.3.3.3

e) Test Type: Basic

11.2 Conformance Class – State Logger

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger

11.2.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Capability

a) Test Purpose: Verify that the server implements the State Logger conformance
class.

b) Test Method: Verify that the server implements the Core conformance class.
Verify the conformance tests listed in section 11.2.2

c) Reference: see references in conformance tests

d) Test Type: Capability

http://www.opengis.net/spec/SPS/2.0/conf/Core/ResultHandling/ResultAccessInfoStorage
http://www.opengis.net/spec/SPS/2.0/conf/StateLogger
http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Capability

OGC 09-000

208 Copyright © 2011 Open Geospatial Consortium

11.2.2 Modules with Basic Tests

11.2.2.1 Service Metadata

11.2.2.1.1 Advertising support for status history logging

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/ServiceMetadata/StatusHistorySupportAdvertisement

a) Test Purpose: Verify that the service indicates support for logging of status
history in its metadata.

b) Test Method: Execute a GetCapabilities request to retrieve the
operationsMetadata section. Verify that the "since" parameter is supported for the
GetStatus operation listed there.

c) Reference: 7.3.2.4.3

d) Test Type: Basic

11.2.2.2 Behavior

11.2.2.2.1 GetStatus with since parameter

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Behavior/GetStatusSinceParameterHandling

a) Test Purpose: Verify that the service handles GetStatus requests with "since"
parameter correctly.

b) Test Method: Devise a valid GetStatus request for a task / tasking request that has
already made more than one state transition. Choose a point in time that is
between the updateTime of the first state transition and the updateTime of the
following state transition. Set the "since" parameter in the GetStatus request to
that point in time. Send the request to the service. Verify that the response
contains information on all state transitions made by the task / tasking request
except the first one.

Likewise, create and send a GetStatus request with "since" parameter value being
a point in time shortly after the updateTime of the last state transition of a
finalized task / tasking request (for accepted Submit and Reserve requests, the
finalization of the resulting scheduled task matters). Verify that the response does
not contain any status information.

c) Reference: 7.3.6

d) Test Type: Basic

11.2.2.2.2 Status history provisioning

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Behavior/StatusHistoryProvisioning

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/ServiceMetadata/StatusHistorySupportAdvertisement
http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Behavior/GetStatusSinceParameterHandling
http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Behavior/StatusHistoryProvisioning

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 209

a) Test Purpose: Verify that the service provides complete state history for all tasks /
tasking requests.

b) Test Method: Devise a valid request for all the tasking operations supported by
the service (Submit, GetFeasibility, Update, Reserve). Send those to the service.

Create valid GetTask requests for the according tasks / tasking requests and send
them to the service. Also create valid GetStatus request with since parameter
value that is well before the time that the initial tasking request was made. Verify
that each response contains information on all the state transitions made by the
request / task so far.

If information on state changes of a task can be retrieved by other means, for
example through notifications, verify that this information matches the one
retrieved via the GetStatus / GetTask operations.

c) Reference: 7.3.6, 7.3.7

d) Test Type: Basic

11.2.2.2.3 Status history storage

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Behavior/StatusHistoryStorage

a) Test Purpose: Verify that the service provides complete state history for all
finalized tasks / tasking requests as long as indicated in its service metadata.

b) Test Method: Devise a valid request for all the tasking operations supported by
the service (Submit, GetFeasibility, Update, Reserve). Send those to the service.

Create valid GetTask requests for the according tasks / tasking requests when they
were finalized. Also create valid GetStatus requests with since parameter value
that is well before the time that the initial tasking request was made. Send them to
the service shortly before the point in time that is defined by the updateTime of
the status report that documented the transition into the final state plus the
"minStatusTime" duration that is stated in the contents section of the service's
capabilities document. Verify that each response contains information on all the
state transitions made by the request / task.

c) Reference: 7.3.3.3

d) Test Type: Basic

11.3 Conformance Class – Reservation Manager

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager

11.3.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Capability

http://www.opengis.net/spec/SPS/2.0/conf/StateLogger/Behavior/StatusHistoryStorage
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Capability

OGC 09-000

210 Copyright © 2011 Open Geospatial Consortium

a) Test Purpose: Verify that the server implements the Reservation Manager
conformance class.

b) Test Method: Verify that the server implements the Core conformance class.
Verify the conformance tests listed in section 11.3.2

c) Reference: see references in conformance tests

d) Test Type: Capability

11.3.2 Modules with Basic Tests

11.3.2.1 Structure

11.3.2.1.1 Confirm operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Structure/ConfirmOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
Confirm operation is invoked.

b) Test Method: Devise and execute a Confirm request. Verify that the service
responds with a valid ConfirmResponse or exception.

c) Reference: 7.3.10

d) Test Type: Basic

11.3.2.1.2 Reserve operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Structure/ReserveOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
Reserve operation is invoked.

b) Test Method: Devise and execute a Reserve request. Verify that the service
responds with a valid ReserveResponse or exception.

c) Reference: 7.3.9

d) Test Type: Basic

11.3.2.2 Service Metadata

11.3.2.2.1 Operations listed in Capabilities

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/ServiceMetadata/OperationsListing

a) Test Purpose: Verify that the Reserve and Confirm operations are listed as
supported operations in the service's metadata.

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Structure/ConfirmOperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Structure/ReserveOperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/ServiceMetadata/OperationsListing

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 211

b) Test Method: Execute a GetCapabilities request to retrieve the
operationsMetadata section. Verify that the Reserve and Confirm operations are
listed there as defined in clause 7.3.2.4.2.

c) Reference: 7.3.2.4.2

d) Test Type: Basic

11.3.2.3 Behavior

11.3.2.3.1 Handling of incorrect expiration time

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Behavior/IncorrectExpirationTime

a) Test Purpose: To verify that the service rejects reservation requests with incorrect
expiration time.

b) Test Method: Devise a Reserve request with valid tasking parameters and with an
expiration time in the past. Execute the request. Verify that the response has
requestStatus "Rejected".

c) Reference: 7.3.9.1

d) Test Type: Basic

11.3.2.3.2 Reservation confirmation

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Behavior/ReservationConfirmation

a) Test Purpose: To verify that the service correctly handles the confirmation of a
reserved task.

b) Test Method: Given a reserved task that has not expired yet. Confirm the task. If
the response has requestStatus rejected, ensure that the task has taskStatus
"Failed" (get the status of the task e.g. via GetStatus operation). Otherwise, ensure
that task status is either InExecution, Completed, Cancelled or Failed (or substate
thereof).

Note: further checks would be possible if "State Logger" conformance class is
implemented.

c) Reference: 7.3.10

d) Test Type: Basic

11.3.2.3.3 Reservation expiration

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Behavior/ReservationExpiration

http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Behavior/IncorrectExpirationTime
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Behavior/ReservationConfirmation
http://www.opengis.net/spec/SPS/2.0/conf/ReservationManager/Behavior/ReservationExpiration

OGC 09-000

212 Copyright © 2011 Open Geospatial Consortium

a) Test Purpose: To verify that the service correctly handles expiration of a reserved
task.

b) Test Method: Devise and execute a valid Reserve request that will be accepted.
Get the expirationTime of the reservation (e.g. via GetStatus). Do NOT confirm
the reservation. After the expirationTime has passed, get the latest status of the
task. Verify that the status is encoded as a reservation report. Verify that the
updateTime of the reservation report is the same as the expirationTime provided
in the report and provided in previous reservation reports for that task. Verify that
the event is "ReservationExpired" and that the taskStatus is "Expired".

Verify that a Confirm of an "Expired" task is rejected by the service.

c) Reference: 7.3.9, 7.3.6.4, 7.3.10

d) Test Type: Basic

11.4 Conformance Class – Task Canceller

http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller

11.4.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/Capability

a) Test Purpose: Verify that the server implements the Task Canceller conformance
class.

b) Test Method: Verify that the server implements the Core conformance class.
Verify the conformance tests listed in section 11.4.2

c) Reference: see references in conformance tests

d) Test Type: Capability

11.4.2 Modules with Basic Tests

11.4.2.1 Structure

11.4.2.1.1 Cancel operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/Structure/CancelOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
Cancel operation is invoked.

b) Test Method: Devise and execute a Cancel request. Verify that the service
responds with a valid CancelResponse or exception.

c) Reference: 7.3.13

http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller
http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/Capability
http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/Structure/CancelOperationFacetValidity

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 213

d) Test Type: Basic

11.4.2.2 Behavior

11.4.2.2.1 Cancellation handling

http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/Behavior/CancellationHandling

a) Test Purpose: To verify that the service handles task cancellations correctly.

b) Test Method: Given a scheduled task that is not finalized yet. Devise and execute
a Cancel request for that task.

If the request was rejected, verify that the status of the task is not "Cancelled".
Otherwise verify that the status is "Cancelled".

c) Reference: 7.3.13.1

d) Test Type: Basic

11.4.2.3 Service Metadata

11.4.2.3.1 Operation listed in Capabilities

http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/ServiceMetadata/OperationListing

a) Test Purpose: Verify that the Cancel operation is listed as supported operation in
the service's metadata.

b) Test Method: Execute a GetCapabilities request to retrieve the
operationsMetadata section. Verify that the Cancel operation is listed there as
defined in clause 7.3.2.4.2.

c) Reference: 7.3.2.4.2

d) Test Type: Basic

11.5 Conformance Class – Feasibility Controller

http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController

11.5.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController/Capability

a) Test Purpose: Verify that the server implements the Feasibility Controller
conformance class.

b) Test Method: Verify that the server implements the Core conformance class.
Verify the conformance tests listed in section 11.5.2

http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/Behavior/CancellationHandling
http://www.opengis.net/spec/SPS/2.0/conf/TaskCanceller/ServiceMetadata/OperationListing
http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController
http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController/Capability

OGC 09-000

214 Copyright © 2011 Open Geospatial Consortium

c) Reference: see references in conformance tests

d) Test Type: Capability

11.5.2 Modules with Basic Tests

11.5.2.1 Structure

11.5.2.1.1 GetFeasibility operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController/Structure/GetFeasibilityOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
GetFeasibility operation is invoked.

b) Test Method: Devise and execute a GetFeasibility request. Verify that the service
responds with a valid GetFeasibilityResponse or exception.

c) Reference: 7.3.11

d) Test Type: Basic

11.5.2.2 Service Metadata

11.5.2.2.1 Operation listed in Capabilities

http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController/ServiceMetadata/OperationListing

a) Test Purpose: Verify that the GetFeasibility operation is listed as supported
operation in the service's metadata.

b) Test Method: Execute a GetCapabilities request to retrieve the
operationsMetadata section. Verify that the GetFeasibility operation is listed there
as defined in clause 7.3.2.4.2.

c) Reference: 7.3.2.4.2

d) Test Type: Basic

11.6 Conformance Class – Task Updater

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater

11.6.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Capability

a) Test Purpose: Verify that the server implements the Task Updater conformance
class.

http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController/Structure/GetFeasibilityOperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/FeasibilityController/ServiceMetadata/OperationListing
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Capability

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 215

b) Test Method: Verify that the server implements the Core conformance class.
Verify the conformance tests listed in section 11.6.2

c) Reference: see references in conformance tests

d) Test Type: Capability

11.6.2 Modules with Basic Tests

11.6.2.1 Structure

11.6.2.1.1 Update operation facet validity

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Structure/UpdateOperationFacetValidity

a) Test Purpose: To verify that the service provides the correct response when the
Update operation is invoked.

b) Test Method: Devise and execute an Update request. Verify that the service
responds with a valid UpdateResponse or exception.

c) Reference: 7.3.12

d) Test Type: Basic

11.6.2.2 Behavior

11.6.2.2.1 Handling of updatable DataArray

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/UpdatableDataArray

a) Test Purpose: To verify that the service correctly flags the content of an updatable
DataArray

b) Test Method: Devise and execute a DescribeTasking request for each procedure.
Verify that each tasking parameter description where a DataArray is contained,
the elementType description in that array is not flagged as updatable (either the
DataArray is updatable in general or it is not; sub components of the component
that is the elementType description may be flagged to be updatable).

c) Reference: 7.3.12.1

d) Test Type: Basic

11.6.2.2.2 Handling of updatable DataRecord / DataChoice

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/UpdatableDataRecordAndDataChoice

a) Test Purpose: To verify that the service correctly sets the updatable flag on
DataRecords and DataChoices

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Structure/UpdateOperationFacetValidity
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/UpdatableDataArray
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/UpdatableDataRecordAndDataChoice

OGC 09-000

216 Copyright © 2011 Open Geospatial Consortium

b) Test Method: Devise and execute a DescribeTasking request for each procedure.
Verify that each tasking parameter description where a DataRecord/DataChoice is
updatable, at least one field/item is updatable as well.

c) Reference: 7.3.12.1

d) Test Type: Basic

11.6.2.2.3 Handling update not supported for a given procedure

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/UpdateNotSupportedForProcedure

a) Test Purpose: To verify that a service which in general supports the Update
operation handles Update requests for tasks of a procedure that has no updatable
tasking parameters correctly.

b) Test Method: Devise and execute a Submit request for a procedure where the
tasking parameter description (retrieved via DescribeTasking) has no updatable
parameters. When the task was accepted, devise and execute an Update request
for that task, with the same tasking parameters as those used in the Submit
request. Verify that the service returns an UpdateResponse where the
requestStatus is set to 'Rejected'.

c) Reference: 7.3.12.1

d) Test Type: Basic

11.6.2.2.4 New identifier assignment

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/IdentifierAssignment

a) Test Purpose: To verify that the service assigns a new identifier to an incoming
Update request and does not mix it up with the task identifier provided in the
request.

b) Test Method: Devise and execute an Update request. Verify that the task property
in the status report of the UpdateResponse does not have the same value as the
task property in the Update request.

c) Reference: 7.3.12.1

d) Test Type: Basic

11.6.2.2.5 State transition resulting of task update

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/StateTransitions

a) Test Purpose: To verify that the service correctly handles state transitions of a
task resulting from an update request to it.

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/UpdateNotSupportedForProcedure
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/IdentifierAssignment
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/StateTransitions

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 217

b) Test Method: Devise and execute an Update request targetting a scheduled task.
Get the updateTime from the status report that informs about the acceptance /
rejection of the update request.

If the request was accepted, verify that a status report exists for the updated task
with the same updateTime and event "TaskUpdated".

Otherwise (the request was rejected), verify that no such status report exists for
the task that was intended to be updated.

c) Reference: 7.3.12.1

d) Test Type: Basic

11.6.2.2.6 Structure of tasking parameters for Update

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/HandlingTaskingParametersForUpdate

a) Test Purpose: To verify that tasking parameters used in an Update request are
structured correctly.

b) Test Method: Create a task so that it is InExecution (or Reserved, if the Reserve
operation is supported). Remove all non-updatable components from the tasking
parameter description that was provided by the service in a DescribeTasking
request for the procedure associated with the task. Non-updatable components are
those components in the description that have the property 'updatable' explicitly
set to false. If a non-updatable component is contained in a field/item of a
DataRecord/DataChoice then completely remove that field/item. Devise and
execute Update requests with tasking parameters structured according to the
resulting description. Verify that the service does not throw an
InvalidParameterValue exception with locator 'taskingParameters'.

c) Reference: 7.3.12.1

d) Test Type: Basic

11.6.2.3 Service Metadata

11.6.2.3.1 Operation listed in Capabilities

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/ServiceMetadata/OperationListing

a) Test Purpose: Verify that the Update operation is listed as supported operation in
the service's metadata.

b) Test Method: Execute a GetCapabilities request to retrieve the
operationsMetadata section. Verify that the Update operation is listed there as
defined in clause 7.3.2.4.2.

http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/Behavior/HandlingTaskingParametersForUpdate
http://www.opengis.net/spec/SPS/2.0/conf/TaskUpdater/ServiceMetadata/OperationListing

OGC 09-000

218 Copyright © 2011 Open Geospatial Consortium

c) Reference: 7.3.2.4.2

d) Test Type: Basic

11.7 Conformance Class – Basic PubSub

http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub

11.7.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/Capability

a) Test Purpose: Verify that the server implements the Basic PubSub conformance
class.

b) Test Method: Verify that the server implements the Core conformance class.
Verify the conformance tests listed in section 11.7.2

c) Reference: see references in conformance tests

d) Test Type: Capability

11.7.2 Modules with Basic Tests

11.7.2.1 Event Publication

11.7.2.1.1 SPS event encoding

http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/EventPublication/Encoding

a) Test Purpose: Verify that events are properly encoded.

b) Test Method: Subscribe for all events published by the service. Devise tasking
requests that cause publication of according events. For each event received,
check that it is encoded as defined in Table 64.

c) Reference: 8.2, Table 64

d) Test Type: Basic

11.7.2.1.2 SPS event publication

http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/EventPublication/Publication

a) Test Purpose: Verify that the service publishes the mandatory SPS events.

b) Test Method: Subscribe for all events published by the service. Devise tasking
requests that cause publication of according events. At least the
SubmissionCompleted / TaskCompleted event should be published by the service
for a successfully submitted and completed task. If the service implements the

http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub
http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/Capability
http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/EventPublication/Encoding
http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/EventPublication/Publication

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 219

state logger conformance class, i.e. logs all state transitions of a tasking request /
task, do the following:

• once a tasking request / task was finalized, get all state information for it via
the GetStatus operation

• check that the events published by the service for this tasking request / task
are in line with the state transitions documented in the GetStatus response.

• Otherwise check at least that the final state is published correctly.

c) Reference: 8.2, Table 64

d) Test Type: Basic

11.7.2.2 Notification Service Metadata

11.7.2.2.1 Notifications section

http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/ServiceMetadata/NotificationsSection

a) Test Purpose: Verify that the service supports the notifications section in the
capabilities document.

b) Test Method: Create a GetCapabilities request to get the capabilities document
with the notifications section and check that it is implemented correctly.

c) Reference: 7.3.2, OGC 09-001 clause 8

d) Test Type: Basic

11.8 Conformance Class – Channel Based PubSub

http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub

11.8.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/Capability

a) Test Purpose: Verify that the server implements the Channel Based PubSub
conformance class.

b) Test Method: Verify that the server implements the Basic PubSub conformance
class. Verify the conformance tests listed in section 11.8.2

c) Reference: see references in conformance tests

d) Test Type: Capability

http://www.opengis.net/spec/SPS/2.0/conf/BasicPubSub/ServiceMetadata/NotificationsSection
http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub
http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/Capability

OGC 09-000

220 Copyright © 2011 Open Geospatial Consortium

11.8.2 Modules with Basic Tests

11.8.2.1 Channel based Event Publication

11.8.2.1.1 Correct channel assignments

http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/ChannelEventPublication/ChannelAssignments

a) Test Purpose: Verify that published events are assigned to correct channels.

b) Test Method: Create one subscription targetting each of the SPS channels
contained in the service's topic set. Devise tasking requests that cause publication
of events on each of these channels. For each subscription, check that those and
only those events are received that are to be published on the channel associated
with that subscription according to Table 67.

c) Reference: 8.3

d) Test Type: Basic

11.8.2.2 Channel based Notification Service Metadata

11.8.2.2.1 Support of Topic Dialect

http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/ServiceMetadata/TopicDialectSupport

a) Test Purpose: Verify that the service supports at least one topic expression dialect.

b) Test Method: Devise and send a GetCapabilities request to retrieve the service's
notifications metadata. Inspect which filter dialects are supported. Ensure that at
least one topic expression dialect is listed.

c) Reference: 8.3, OGC 09-001 clause 8

d) Test Type: Basic

11.8.2.2.2 Topic Set Contents

http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/ServiceMetadata/TopicSetContents

a) Test Purpose: Verify that the topic set provided by the service contains the
required SPS topics.

b) Test Method: Devise and send a GetCapabilities request to retrieve the service's
notifications metadata. Retrieve the topic set from that metadata and inspect it.
Ensure that all the mandatory topics listed in Table 67 are marked as topics in this
topic set.

c) Reference: 8.3

http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/ChannelEventPublication/ChannelAssignments
http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/ServiceMetadata/TopicDialectSupport
http://www.opengis.net/spec/SPS/2.0/conf/ChannelBasedPubSub/ServiceMetadata/TopicSetContents

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 221

d) Test Type: Basic

11.9 Conformance Class – XML Encoding

http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding

11.9.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding/Capability

a) Test Purpose: Verify that the server implements the XML Encoding conformance
class.

b) Test Method: Verify that the server implements the following conformance
classes http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-components,
http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-encodings,
http://www.opengis.net/spec/SWES/2.0/conf/XMLEncoding. Verify the
conformance tests listed in section 11.9.2

c) Reference: see references in conformance tests

d) Test Type: Capability

11.9.2 Modules with Basic Tests

11.9.2.1 Validation

11.9.2.1.1 XML Encoding Validity

http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding/Validation/XMLEncoding

a) Test Purpose: Verify that XML implementations of the conceptual types defined
in the specification are valid according to their XML Schema implementation.

b) Test Method: For all XML instance documents received from the service that are
in the namespace http://www.opengis.net/sps/2.0, verify that they are valid
according to their XML Schema definition listed in Table 82.

Note: the sps.xsd can be used for validating any such XML instance against its
schema definition.

c) Reference: 12

d) Test Type: Basic

11.9.2.1.2 XML Validation Exception Reporting

http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding/Validation/ExceptionReporting

a) Test Purpose: Verify that the service sends an exception with appropriate code if
it received an invalid request.

http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding
http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding/Capability
http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-components
http://www.opengis.net/spec/SWE/2.0/conf/xsd-simple-encodings
http://www.opengis.net/spec/SWES/2.0/conf/XMLEncoding
http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding/Validation/XMLEncoding
http://www.opengis.net/spec/SPS/2.0/conf/XMLEncoding/Validation/ExceptionReporting

OGC 09-000

222 Copyright © 2011 Open Geospatial Consortium

b) Test Method: For all SPS operations supported by the service, create an XML
request instance that is invalid according to its schema definition outlined in Table
82 and send it to the service. Verify that the service returns an exception with
code InvalidRequest.

c) Reference: 7.2, 12

d) Test Type: Basic

11.10 Conformance Class – SOAP

http://www.opengis.net/spec/SPS/2.0/conf/SOAP

11.10.1 Capability Test

http://www.opengis.net/spec/SPS/2.0/conf/SOAP/Capability

a) Test Purpose: Verify that the server implements the SOAP conformance class.

b) Test Method: Verify that the server implements the XML Encoding conformance
class. Do so by checking that the Body element in SOAP messages sent to the
service for invoking an SPS operation contains a valid XML representation of the
according operation request. Verify that the server implements the
http://www.opengis.net/spec/SWES/2.0/conf/SOAPBinding conformance classes.
Verify the conformance tests listed in section 11.10.2.

c) Reference: see references in conformance tests

d) Test Type: Capability

11.10.2 Modules with Basic Tests

11.10.2.1 Action URIs

11.10.2.1.1Asynchronous request response

http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ActionURIs/AsyncRequestResponse

a) Test Purpose: To verify that WS-Addressing is used to enable asynchronous
request / response.

b) Test Method: Get the service metadata (WSDL and / or Capabilities document).
Ensure that the service metadata does not indicate support for any asynchronous
request response realization technique that could be used by clients other than
WS-Addressing.

c) Reference: 9.5

d) Test Type: Basic

http://www.opengis.net/spec/SPS/2.0/conf/SOAP
http://www.opengis.net/spec/SPS/2.0/conf/SOAP/Capability
http://www.opengis.net/spec/SWES/2.0/conf/SOAPBinding
http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ActionURIs/AsyncRequestResponse

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 223

11.10.2.1.2Operation Actions

http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ActionURIs/OperationActions

a) Test Purpose: To verify that the service recognizes and uses correct action URIs
for operation requests and responses as well as notifications as defined in this
standard.

b) Test Method: Depending upon the SOAP binding available at the service, execute
a request for each SPS operation supported by the service. Verify that the service
uses the correct SOAP action as defined in Table 68 or uses an empty action in its
response. If WS-Addressing is used, verify that the service uses the correct WS-
Addressing action URIs as defined in Table 68.

c) Reference: 9.3

d) Test Type: Basic

11.10.2.2 Exception Handling

11.10.2.2.1Usage of SOAP faults

http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ExceptionHandling/SOAPFaultUsage

a) Test Purpose: Verify that SOAP faults for the SPS operations are encoded
correctly.

Test Method: For each SPS operation supported by the service, create one SOAP encoded
request that causes an exception with certain code. For each operation, repeat this so that

one test request for all applicable exception codes (as listed in
b) Figure 12) is available. Send the requests to the service. Verify that the service

returns a SOAP fault as defined in OGC 09-001 clause 19.2 and clause 9.2 in this
standard.

c) Reference: 9.2, OGC 09-001 clause 19.2

d) Test Type: Basic

11.10.2.3 Service Metadata

11.10.2.3.1SOAP operation encoding advertised

http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ServiceMetadata/OperationEncodingAdvertisement

a) Test Purpose: Verify that the service indicates that it supports the SOAP binding.

b) Test Method: Devise a GetCapabilities request and send it to the service to
retrieve the operationsMetadata section of the capabilities document. Verify that a
"PostEncoding" constraint for the HTTP POST transfer of all operations exists
that has the value "SOAP".

http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ActionURIs/OperationActions
http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ExceptionHandling/SOAPFaultUsage
http://www.opengis.net/spec/SPS/2.0/conf/SOAP/ServiceMetadata/OperationEncodingAdvertisement

OGC 09-000

224 Copyright © 2011 Open Geospatial Consortium

c) Reference: 7.3.2.4.4

d) Test Type: Basic

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 225

12 Annex B - XML Schema Documents (normative)

In addition to this document, this standard includes several normative XML Schema
Documents. These XML Schema Documents are bundled in a zip file with the present
document. After OGC acceptance of a version 2.0 of this standard, these XML Schema
Documents will also be posted online at the URL http://schemas.opengis.net/sps/2.0. In
the event of a discrepancy between the bundled and online versions of the XML Schema
Documents, the online files shall be considered authoritative.

The data types specified in this standard are contained in thirteen packages which
themselves are children of the Sensor Planning Service package (see clause 7.3).

The UML model has been mapped to its XML Schema encoding using the rules
described in clause 24 of [OGC 09-001], resulting in the following XML Schema
documents:

sps.xsd (includes the other schema through xs:include statements)

spsCancel.xsd

spsCommon.xsd

spsConfirm.xsd

spsContents.xsd

spsDescribeResultAccess.xsd

spsDescribeTasking.xsd

spsGetCapabilities.xsd

spsGetFeasibility.xsd

spsGetStatus.xsd

spsGetTask.xsd

spsReserve.xsd

spsSubmit.xsd

spsUpdate.xsd

http://schemas.opengis.net/sps/2.0

OGC 09-000

226 Copyright © 2011 Open Geospatial Consortium

Requirement

http://www.opengis.net/spec/SPS/2.0/req/XML/GeneralEncodingRule

REQ 122. The XML encoding of the conceptual types defined in this
standard shall be as defined by the XML Schema files listed and
referenced in clause 12.

More specifically, the XML encoding of each conceptual type
shall be valid against the XML Schema definition of the
according mapping as defined in Table 82.

The following table provides an overview how each of the conceptual model types
defined by this standard has been realized in the XML Schema implementation.

Table 82 — XML Schema implementation of types defined by the SPS conceptual
model

UML class object element type property type

SPS Common Package

StatusReport sps:StatusReport sps:StatusReportType sps:StatusReportPropertyType

Task sps:Task sps:TaskType sps:TaskPropertyType

Alternative sps:Alternative sps:AlternativeType sps:AlternativePropertyType

TaskingResponse sps:TaskingResponse sps:TaskingResponseType sps:TaskingResponsePropertyType

TaskingRequest sps:TaskingRequest sps:TaskingRequestType sps:TaskingRequestPropertyType

ParameterData sps:ParameterData sps:ParameterDataType sps:ParameterDataPropertyType

TaskingRequestStatus
Code

- sps:TaskingRequestStatusCode
Type

-

TaskStatusCode - sps:TaskStatusCodeType -

EventCode - sps:EventCodeType -

SPS Cancel Package

Cancel sps:Cancel sps:CancelType sps:CancelPropertyType

CancelResponse sps:CancelResponse sps:CancelResponseType sps:CancelResponsePropertyType

SPS Confirm Package

Confirm sps:Confirm sps:ConfirmType sps:ConfirmPropertyType

ConfirmResponse sps:ConfirmResponse sps:ConfirmResponseType sps:ConfirmResponsePropertyType

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 227

UML class object element type property type

SPS Contents Package

SensorOffering sps:SensorOffering sps:SensorOfferingType sps:SensorOfferingPropertyType

SPSContents sps:SPSContents sps:SPSContentsType sps:SPSContentsPropertyType

PointOrPolygon sps:PointOrPolygon (group) - sps:PointOrPolygonPropertyType

SPS DescribeResultAccess Package

DataAvailable sps:DataAvailable sps:DataAvailableType sps:DataAvailablePropertyType

DescribeResultAccess sps:DescribeResultAccess sps:DescribeResultAccessType sps:DescribeResultAccessPropertyT
ype

DescribeResultAccess
Response

sps:DescribeResultAccessRe
sponse

sps:DescribeResultAccessResp
onseType

sps:DescribeResultAccessResponse
PropertyType

DataNotAvailable sps:DataNotAvailable sps:DataNotAvailableType sps:DataNotAvailablePropertyType

TaskOrProcess sps:TaskOrProcess (group) - sps:TaskOrProcessPropertyType

AvailableOrNot sps:AvailableOrNot (group) sps:AvailableOrNotType sps:AvailableOrNotPropertyType

UnavailableCode - sps:UnavailableCodeType -

SPS DescribeTasking Package

DescribeTaskingResp
onse

sps:DescribeTaskingRespons
e

sps:DescribeTaskingResponseT
ype

sps:DescribeTaskingResponsePrope
rtyType

DescribeTasking sps:DescribeTasking sps:DescribeTaskingType sps:DescribeTaskingPropertyType

SPS GetCapabilities Package

GetCapabilities sps:GetCapabilities sps:GetCapabilitiesType sps:GetCapabilitiesPropertyType

Capabilities sps:Capabilities sps:CapabilitiesType sps:CapabilitiesPropertyType

SPS GetFeasibility Package

GetFeasibilityRespons
e

sps:GetFeasibilityResponse sps:GetFeasibilityResponseTyp
e

sps:GetFeasibilityResponseProperty
Type

GetFeasibility sps:GetFeasibility sps:GetFeasibilityType sps:GetFeasibilityPropertyType

SPS GetStatus Package

GetStatusResponse sps:GetStatusResponse sps:GetStatusResponseType sps:GetStatusResponsePropertyTyp
e

GetStatus sps:GetStatus sps:GetStatusType sps:GetStatusPropertyType

OGC 09-000

228 Copyright © 2011 Open Geospatial Consortium

UML class object element type property type

SPS GetTask Package

GetTask sps:GetTask sps:GetTaskType sps:GetTaskPropertyType

GetTaskResponse sps:GetTaskResponse sps:GetTaskResponseType sps:GetTaskResponsePropertyType

SPS Reserve Package

ReservationReport sps:ReservationReport sps:ReservationReportType sps:ReservationReportPropertyType

ReserveResponse sps:ReserveResponse sps:ReserveResponseType sps:ReserveResponsePropertyType

Reserve sps:Reserve sps:ReserveType sps:ReservePropertyType

SPS Submit Package

SubmitResponse sps:SubmitResponse sps:SubmitResponseType sps:SubmitResponsePropertyType

Submit sps:Submit sps:SubmitType sps:SubmitPropertyType

SPS Update Package

UpdateResponse sps:UpdateResponse sps:UpdateResponseType sps:UpdateResponsePropertyType

Update sps:Update sps:UpdateType sps:UpdatePropertyType

OGC 09-000

Copyright © 2011 Open Geospatial Consortium 229

13 Annex C - Revision history

Date Release Editor Primary
clauses

modified

Description

15.08.2009 0.0.1 Ingo Simonis all initial version
18.11.2009 0.1.0 Ingo

Simonis/Joh
annes
Echterhoff

throughout changes for RFC draft

04.12.2009 0.2.0 Ingo
Simonis/Joh
annes
Echterhoff

all final RFC draft

17.12.2009 0.2.1 Johannes
Echterhoff

all final changes to RFC document discussed at
Dec TC meeting

10.06.2010 0.3.0 Ingo Simonis all Integration of RFC comments and discussion
10.08.2010 0.4.0 Johannes

Echterhoff
all Integration of latest discussion and

conformance classes
20.08.2010 0.5.0 Ingo Simonis all Integration of requirements according to

modular spec model
31.08.2010 0.6.0 Johannes

Echterhoff
Annex A revised tests

30.09.2010 0.7.0 Johannes
Echterhoff

throughout included comments received during final SWG
review phase

31.01.2011 0.8.0 Ingo Simonis Future work added
21.01.2011 2.0 Carl Reed Various Prepare for publication

OGC 09-000

230 Copyright © 2011 Open Geospatial Consortium

Bibliography

[1] OpenGIS® Implementation Specification, Sensor Planning Service, OGC
document 07-014r3

	1 Scope
	2 Compliance
	2.1 Specification identifier
	2.2 Conformance Classes

	3 Normative references
	4 Terms and definitions
	5 Conventions
	5.1 Abbreviated terms
	5.2 UML notation
	5.3 Platform-neutral and platform-specific standards
	5.4 Data dictionary tables
	5.5 Classes imported from other specifications with predefined XML encoding
	5.6 Namespace Conventions

	6 Sensor Planning Service – Abstract Overview
	6.1 Introduction
	6.2 Client Server Interaction
	6.3 Task – Concept and Handling
	6.3.1 Introduction
	6.3.2 Tasking Parameters
	6.3.3 Tasking requests
	6.3.4 Feasibility of a Task
	6.3.5 Reserving a Task
	6.3.6 State Handling

	6.4 Status Reporting
	6.5 Levels of Abstraction – SPS Chains
	6.6 Asynchronous Communication
	6.7 Information Access

	7 Sensor Planning Service – Implementation Model
	7.1 Interface Overview
	7.2 SPS Exceptions
	7.3 Package Overview
	7.3.1 Common Package
	7.3.1.1 Introduction
	7.3.1.2 Data Types
	7.3.1.3 TaskingRequest
	7.3.1.4 TaskingResponse
	7.3.1.4.1 TaskingResponse – Content and StatusCodes
	7.3.1.4.2 TaskingResponse – Data Type

	7.3.1.5 StatusReport
	7.3.1.6 Task
	7.3.1.7 TaskingRequestStatusCode
	7.3.1.8 TaskStatusCode
	7.3.1.9 EventCode
	7.3.1.10 Alternative
	7.3.1.11 ParameterData

	7.3.2 GetCapabilities Operation
	7.3.2.1 Introduction
	7.3.2.2 Data Types
	7.3.2.3 Operation Request – GetCapabilities
	7.3.2.4 Operation Response – Capabilities
	7.3.2.4.1 OperationsMetadata section standard contents
	7.3.2.4.2 Advertising Implemented Operations
	7.3.2.4.3 Advertising Support for Status Logging
	7.3.2.4.4 Advertising Supported Operation Encodings
	7.3.2.4.5 Advertising Other Operation Metadata
	7.3.2.4.6 Advertising Supported Conformance Classes

	7.3.2.5 Exceptions
	7.3.2.6 Examples

	7.3.3 Contents Package
	7.3.3.1 Introduction
	7.3.3.2 Data Types
	7.3.3.3 SPSContents
	7.3.3.4 SensorOffering
	7.3.3.5 PointOrPolygon

	7.3.4 DescribeTasking Operation
	7.3.4.1 Introduction
	7.3.4.2 Data Types
	7.3.4.3 Operation Request - DescribeTasking
	7.3.4.4 Operation Response - DescribeTaskingResponse
	7.3.4.5 Exceptions
	7.3.4.6 Examples

	7.3.5 Submit Operation
	7.3.5.1 Introduction
	7.3.5.2 Data Types
	7.3.5.3 Operation Request - Submit
	7.3.5.4 Operation Response - SubmitResponse
	7.3.5.5 Exceptions
	7.3.5.6 Examples

	7.3.6 GetStatus Operation
	7.3.6.1 Introduction
	7.3.6.2 Data Types
	7.3.6.3 Operation Request - GetStatus
	7.3.6.4 Operation Response - GetStatusResponse
	7.3.6.5 Exceptions
	7.3.6.6 Examples

	7.3.7 GetTask Operation
	7.3.7.1 Introduction
	7.3.7.2 Data Types
	7.3.7.3 Operation Request – GetTask
	7.3.7.4 Operation Response – GetTaskResponse
	7.3.7.5 Exceptions
	7.3.7.6 Examples

	7.3.8 DescribeResultAccess Operation
	7.3.8.1 Introduction
	7.3.8.1.1 Reference group usage
	7.3.8.1.2 Reference usage

	7.3.8.2 Data Types
	7.3.8.3 Operation Request – DescribeResultAccess
	7.3.8.4 TaskOrProcess
	7.3.8.5 Operation Response - DescribeResultAccessResponse
	7.3.8.6 AvailableOrNot
	7.3.8.7 DataAvailable
	7.3.8.8 DataNotAvailable
	7.3.8.9 UnavailableCode
	7.3.8.10 SPSMetadata
	7.3.8.11 Exceptions
	7.3.8.12 Examples

	7.3.9 Reserve Operation
	7.3.9.1 Introduction
	7.3.9.2 Data Types
	7.3.9.3 Operation Request - Reserve
	7.3.9.4 Operation Response - ReservationReport
	7.3.9.5 ReservationReport
	7.3.9.6 Exceptions
	7.3.9.7 Examples

	7.3.10 Confirm Operation
	7.3.10.1 Introduction
	7.3.10.2 Data Types
	7.3.10.3 Operation Request - Confirm
	7.3.10.4 Operation Response - ConfirmResponse
	7.3.10.5 Exceptions
	7.3.10.6 Examples

	7.3.11 GetFeasibility Operation
	7.3.11.1 Introduction
	7.3.11.2 Data Types
	7.3.11.3 Operation Request - GetFeasibility
	7.3.11.4 Operation Response - GetFeasibilityResponse
	7.3.11.5 Exceptions
	7.3.11.6 Examples

	7.3.12 Update Operation
	7.3.12.1 Introduction
	7.3.12.2 Data Types
	7.3.12.3 Operation Request - Update
	7.3.12.4 Operation Response - UpdateResponse
	7.3.12.5 Exceptions
	7.3.12.6 Examples

	7.3.13 Cancel Operation
	7.3.13.1 Introduction
	7.3.13.2 Data Types
	7.3.13.3 Operation Request - Cancel
	7.3.13.4 Operation Response - CancelResponse
	7.3.13.5 Exceptions
	7.3.13.6 Examples

	7.4 SPS tasking parameters representation
	7.4.1 Optional Parameters
	7.4.2 Default Values
	7.4.3 Updatable parameters
	7.4.4 Constraints/restrictions
	7.4.5 Definition (observedProperty)/Semantics
	7.4.6 Uoms
	7.4.7 Encoding (XML, text, binary)

	8 Publish/Subscribe
	8.1 Introduction
	8.2 SPS Events
	8.3 Channel based filtering/SPS notification topics

	9 SOAP binding
	9.1 Introduction
	9.2 Exceptions
	9.2.1 StatusInformationExpired exception
	9.2.2 ModificationOfFinalizedTask exception

	9.3 Action URIs
	9.4 Realization of Publish/Subscribe
	9.5 Realization of Asynchronous Request/Response
	9.6 SPS Examples Scenario
	9.6.1 Retrieving the Capabilities Document
	9.6.2 Getting Result Access Information for a Procedure
	9.6.3 Getting the Tasking Parameter Description
	9.6.4 Determining the Feasibility of a Tasking Request
	9.6.5 Scheduling a Task (Submit / Reserve)
	9.6.5.1 Task Submission
	9.6.5.2 Reserving a Task
	9.6.5.3 Automatic Reservation Expiration
	9.6.5.4 Confirming a Reserved Task
	9.6.5.5 Cancelling a Scheduled Task
	9.6.5.6 Task Failure
	9.6.5.7 Updating a Scheduled Task
	9.6.5.8 Usage of LatestResponseTime
	9.6.5.8.1 Final Response Not Provided Before Latest Response Time
	9.6.5.8.2 Final Response is Provided Before Latest Response Time

	9.6.5.9 Task Completion

	9.6.6 Getting Result Access Information for a Task
	9.6.7 Service Exceptions
	9.6.8 Notifications
	9.6.9 Using WS-Addressing

	10 SPS Task/Tasking Request State Machine Documentation
	10.1 Task State Machine
	10.1.1 Diagrams
	10.1.2 States/Choices
	10.1.2.1 Scheduled State
	10.1.2.2 InExecution State
	10.1.2.3 Reserved State
	10.1.2.4 Tasking Request Choice
	10.1.2.5 Final State
	10.1.2.6 Initial State

	10.1.3 Events/Trigger
	10.1.3.1 DataPublished
	10.1.3.2 ReservationExpired
	10.1.3.3 TaskCancelled
	10.1.3.4 TaskCompleted
	10.1.3.5 TaskConfirmed
	10.1.3.6 TaskFailed
	10.1.3.7 TaskReserved
	10.1.3.8 TaskSubmitted
	10.1.3.9 TaskUpdated

	10.2 Tasking Request State Machine
	10.2.1 Diagrams
	10.2.2 States/Choices
	10.2.2.1 Pending State
	10.2.2.2 Accepted State
	10.2.2.3 ChoiceA
	10.2.2.4 ChoiceB
	10.2.2.5 Initial State
	10.2.2.6 Rejected (Final) State

	10.2.3 Events/Trigger
	10.2.3.1 TaskingRequestAccepted
	10.2.3.2 TaskingRequestExpired
	10.2.3.3 TaskingRequestRejected
	10.2.3.4 TaskingRequestPending

	11 Annex A – Abstract Test Suite and Conformance Testing (normative)
	11.1 Conformance Class – Core
	11.1.1 Capability Test
	11.1.2 Modules with Basic Tests
	11.1.2.1 Common Request Response Handling
	11.1.2.1.1 Invalid version number
	11.1.2.1.2 Service and version appropriateness

	11.1.2.2 Exception Reporting
	11.1.2.2.1 Exception Appropriateness
	11.1.2.2.2 Exception Model Compliancy

	11.1.2.3 Service Metadata
	11.1.2.3.1 Adherence to property inheritance mechanism
	11.1.2.3.2 Default Service Version
	11.1.2.3.3 GetCapabilities operation facet validity
	11.1.2.3.4 Indicate support of SWE Common Encodings
	11.1.2.3.5 Indicate support of SWE Common Structures
	11.1.2.3.6 Listing of supported conformance classes
	11.1.2.3.7 Mandatory Operations
	11.1.2.3.8 Minimum section set
	11.1.2.3.9 Number of property values for sensor offering
	11.1.2.3.10 Version negotiation for the GetCapabilities request

	11.1.2.4 DescribeTasking
	11.1.2.4.1 DescribeTasking operation facet validity
	11.1.2.4.2 Provide name for tasking parameter component
	11.1.2.4.3 Tasking Parameter Description Model Validity

	11.1.2.5 Tasking
	11.1.2.5.1 Tasking Parameter Usage
	11.1.2.5.2 Tasking request expiration

	11.1.2.6 State Handling
	11.1.2.6.1 GetStatus operation facet validity
	11.1.2.6.2 GetTask operation facet validity
	11.1.2.6.3 Handling requests for already deleted status information
	11.1.2.6.4 State handling
	11.1.2.6.5 State information storage
	11.1.2.6.6 State provisioning
	11.1.2.6.7 StatusReport Usage in GetStatusResponse
	11.1.2.6.8 StatusReport Usage in GetTaskResponse

	11.1.2.7 Submit
	11.1.2.7.1 StatusReport Usage in SubmitResponse
	11.1.2.7.2 Submit operation facet validity
	11.1.2.7.3 Successful task submission

	11.1.2.8 Result Handling
	11.1.2.8.1 DescribeResultAccess operation facet validity
	11.1.2.8.2 Handling of data unavailability
	11.1.2.8.3 Identifiers for references and reference groups
	11.1.2.8.4 Incremental data publication
	11.1.2.8.5 Referencing general data services for procedure
	11.1.2.8.6 Referencing task data
	11.1.2.8.7 Result access information storage

	11.2 Conformance Class – State Logger
	11.2.1 Capability Test
	11.2.2 Modules with Basic Tests
	11.2.2.1 Service Metadata
	11.2.2.1.1 Advertising support for status history logging

	11.2.2.2 Behavior
	11.2.2.2.1 GetStatus with since parameter
	11.2.2.2.2 Status history provisioning
	11.2.2.2.3 Status history storage

	11.3 Conformance Class – Reservation Manager
	11.3.1 Capability Test
	11.3.2 Modules with Basic Tests
	11.3.2.1 Structure
	11.3.2.1.1 Confirm operation facet validity
	11.3.2.1.2 Reserve operation facet validity

	11.3.2.2 Service Metadata
	11.3.2.2.1 Operations listed in Capabilities

	11.3.2.3 Behavior
	11.3.2.3.1 Handling of incorrect expiration time
	11.3.2.3.2 Reservation confirmation
	11.3.2.3.3 Reservation expiration

	11.4 Conformance Class – Task Canceller
	11.4.1 Capability Test
	11.4.2 Modules with Basic Tests
	11.4.2.1 Structure
	11.4.2.1.1 Cancel operation facet validity

	11.4.2.2 Behavior
	11.4.2.2.1 Cancellation handling

	11.4.2.3 Service Metadata
	11.4.2.3.1 Operation listed in Capabilities

	11.5 Conformance Class – Feasibility Controller
	11.5.1 Capability Test
	11.5.2 Modules with Basic Tests
	11.5.2.1 Structure
	11.5.2.1.1 GetFeasibility operation facet validity

	11.5.2.2 Service Metadata
	11.5.2.2.1 Operation listed in Capabilities

	11.6 Conformance Class – Task Updater
	11.6.1 Capability Test
	11.6.2 Modules with Basic Tests
	11.6.2.1 Structure
	11.6.2.1.1 Update operation facet validity

	11.6.2.2 Behavior
	11.6.2.2.1 Handling of updatable DataArray
	11.6.2.2.2 Handling of updatable DataRecord / DataChoice
	11.6.2.2.3 Handling update not supported for a given procedure
	11.6.2.2.4 New identifier assignment
	11.6.2.2.5 State transition resulting of task update
	11.6.2.2.6 Structure of tasking parameters for Update

	11.6.2.3 Service Metadata
	11.6.2.3.1 Operation listed in Capabilities

	11.7 Conformance Class – Basic PubSub
	11.7.1 Capability Test
	11.7.2 Modules with Basic Tests
	11.7.2.1 Event Publication
	11.7.2.1.1 SPS event encoding
	11.7.2.1.2 SPS event publication

	11.7.2.2 Notification Service Metadata
	11.7.2.2.1 Notifications section

	11.8 Conformance Class – Channel Based PubSub
	11.8.1 Capability Test
	11.8.2 Modules with Basic Tests
	11.8.2.1 Channel based Event Publication
	11.8.2.1.1 Correct channel assignments

	11.8.2.2 Channel based Notification Service Metadata
	11.8.2.2.1 Support of Topic Dialect
	11.8.2.2.2 Topic Set Contents

	11.9 Conformance Class – XML Encoding
	11.9.1 Capability Test
	11.9.2 Modules with Basic Tests
	11.9.2.1 Validation
	11.9.2.1.1 XML Encoding Validity
	11.9.2.1.2 XML Validation Exception Reporting

	11.10 Conformance Class – SOAP
	11.10.1 Capability Test
	11.10.2 Modules with Basic Tests
	11.10.2.1 Action URIs
	11.10.2.1.1 Asynchronous request response
	11.10.2.1.2 Operation Actions

	11.10.2.2 Exception Handling
	11.10.2.2.1 Usage of SOAP faults

	11.10.2.3 Service Metadata
	11.10.2.3.1 SOAP operation encoding advertised

	12 Annex B - XML Schema Documents (normative)
	13 Annex C - Revision history

